
1

Python FPGA Programming
with Data-Centric Multi-Level Design
Johannes de Fine Licht∗, Tiziano De Matteis∗, Tal Ben-Nun∗, Andreas Kuster∗

Oliver Rausch∗, Manuel Burger∗, Carl-Johannes Johnsen†∗, Torsten Hoefler∗

∗Department of Computer Science, ETH Zurich, †Department of Computer Science, University of
Copenhagen

Abstract—Although high-level synthesis (HLS) tools have significantly improved programmer productivity over hardware description
languages, developing for FPGAs remains tedious and error prone. Programmers must learn and implement a large set of
vendor-specific syntax, patterns, and tricks to optimize (or even successfully compile) their applications, while dealing with
ever-changing toolflows from the FPGA vendors. We propose a new way to develop, optimize, and compile FPGA programs. The
Data-Centric parallel programming (DaCe) framework allows applications to be defined by their dataflow and control flow through the
Stateful DataFlow multiGraph (SDFG) representation, capturing the abstract program characteristics, and exposing a plethora of
optimization opportunities. In this work, we show how extending SDFGs with multi-level Library Nodes incorporates both
domain-specific and platform-specific optimizations into the design flow, enabling knowledge transfer across application domains and
FPGA vendors. We present the HLS-based FPGA code generation backend of DaCe, and show how SDFGs are code generated for
either FPGA vendor, emitting efficient HLS code that is structured and annotated to implement the desired architecture.

F

1 INTRODUCTION

The widespread adoption of HLS tools have greatly im-
proved programmer productivity when targeting FPGAs by
allowing kernels to be developed in C++ or OpenCL [1].
Still, achieving efficient architectures remains challenging in
practice, as the optimization space of hardware design is
larger than for software; requiring new syntax, new ways
to structure programs, and new transformations [2]. In
this work, we propose employing the Data-Centric parallel
programming (DaCe) framework and its Stateful DataFlow
multiGraph (SDFG) [3] intermediate representation as an al-
ternative way to develop FPGA programs. The data-centric
representation enables explicit management of data location
and movement, which remains the biggest performance
factor in computing today [4].

SDFGs allow representing programs by their dataflow
and control flow independent of the chosen FPGA backend,
enable compatibility across FPGA vendors through code
generation, and are amenable to optimizing transformations
performed directly on the graph. SDFGs have been proven
effective for load/store workloads in various domains, rang-
ing from linear algebra kernels and graph algorithms [3] to
numerical weather prediction [5] and supercomputer-scale
quantum transport simulations [6]. When FPGA SDFGs are
manually authored [3], their performance is on-par with
state-of-the-art implementations and libraries.

Modern compiler techniques, such as polyhedral op-
timization, allow sophisticated automatic optimization of
low-level IR by detecting and transforming loop con-
structs [7], but is restricted to the space of transformations
that can be proven to be “safe”. Rather than relying on
fully automated optimization to exploit all available oppor-
tunities, DaCe exposes powerful performance analysis ca-

CompilerDaCe Framework

Domain-specific Generic
Lowering

Domain
optimization

Program Description

High-level frontend

HLS code Bitstream

General
optimization

foo.xclbin
foo.aocx

Fig. 1. Proposed development workflow using the DaCe framework.

pabilities and optimization tools that enable knowledgeable
performance engineers to perform guided optimization of
programs. Transformations are done via graph rewriting on
the SDFG representation, expressed in terms of the general
dataflow and control flow of the program, thus facilitating
knowledge exchange between programs and domains.

Domain-specific languages can enable additional opti-
mizations by restricting the input domain, allowing addi-
tional assumptions to be made on the program’s behav-
ior, but typically offer limited exchange of knowledge and
engineering effort with other domains. In this work, we
show how the “Library Node” extension to SDFGs, first
prototyped by StencilFlow [5], enable a multi-level design
methodology that exposes the best of both worlds within the
same framework, enabling the application of both domain-
specific and general purpose optimizations to DaCe pro-
grams.
Throughout this work, we describe how the proposed
methodology enables productively developing fast FPGA
programs by utilizing a multi-level approach:

• SDFGs natively expose key aspects of hardware, such
as pipelining, streaming, and systolic arrays.

• DaCe’s FPGA backend targets both Xilinx and Intel
FPGAs with structured, annotated HLS code, en-

ar
X

iv
:2

21
2.

13
76

8v
1 

 [
cs

.D
C

] 
 2

8 
D

ec
 2

02
2



2

G Data: Array/Stream containersT S

A[i, 0:k] res (CR: Sum) Memlet: Data movement unit

State: Control dependencies

Map: Parametric parallelism scope…

c = a * b Tasklet: Fine-grained computationNested SDFG

GEMV Reduce Library: Predefined subgraph with 
platform-specific expansions

Fig. 2. Glossary of nodes and edges in the SDFG representation. This
work extends SDFGs with Library Nodes, highlighted in green.

abling reuse between vendors.
• DSL frontends, such as BLAS, ONNX, or Stencil-

Flow [5], allow expressing programs at a high ab-
straction level, comprehensible to non-FPGA experts.

• High-level domain-specific transformations allow
applying domain knowledge to optimize programs.

• General mid-level transformations allow porting
from CPU to FPGA, and perform key optimizations,
such as replacing memory accesses with streaming.

• Low-level specialization allow employing vendor-
specific tweaks, targeting non-universally supported
features such as shift registers or accumulators.

2 REPRESENTATION AND CODE GENERATION

In the following, we provide an overview of how SD-
FGs represent FPGA programs, and how key concepts are
translated into fast HLS code for the two major vendors:
Xilinx, through the Vivado HLS [8] C++-based compiler;
and Intel, through the Intel OpenCL SDK for FPGA [9]. The
components of SDFGs that we will use are summarized in
Figure 2, and we give a brief primer here.

Access nodes represent data containers in dataflow
states of the SDFG (drawn as ovals with solid (arrays)
or dashed (streams) borders), where they are accessed us-
ing memlets, annotated on dataflow edges. Computations
are performed in small tasks called tasklets (drawn as
hexagons), which can only access memory explicitly passed to
them via dataflow edges, capturing all data movement in the
program. Maps implement explicit parallelism in the graph,
representing parametric replication of the content between
map entry nodes (opening the scope) and map exit nodes
(closing the scope), drawn as trapezoids. Coarse-grained
control flow is represented by control flow graphs, where
nodes are states that only contain pure dataflow. Control
flow and dataflow graphs can be arbitrarily nested in each
other using nested SDFGs to represent arbitrary program
semantics, while still exposing as much analyzable data
movement as possible. Operational semantics can be found
in the initial paper [3].

This work uses Library Nodes, a special version of
the tasklet representing abstract behavior, which is “ex-
panded”/“specialized”/“lowered” (we will use these func-
tionally equivalent terms interchangeably) into parametric

subgraphs that implement the abstract behavior [5]. An ex-
ample SDFG targeting FPGA is shown in Figure 3, which
we will cover in detail in the following sections.

2.1 Code Generating SDFGs
SDFGs are constructed, manipulated, and compiled using
the DaCe framework. DaCe follows the guiding principle
that as many optimization opportunities as possible should
be kept part of the representation — where they can be
manipulated by the performance engineer — rather than
happening as “magic” during code generation. Neverthe-
less, emitting functional and efficient code from SDFGs
poses a significant design and engineering challenge, with
numerous kinks and subtleties arising from moving from
software to the hardware domain. The code generator must
translate the final representation into structured HLS code
that is easily digestible by the compiler, faithfully follows
the functional semantics of the SDFG, and that successfully
achieves all parallelism implied by the representation.

The FPGA backend of DaCe is modularized into a
generic part, which orchestrates the traversal of the SDFG,
and two lower level specialized backends for Xilinx and
Intel, which are responsible for emitting vendor specific
code for Vivado HLS (C++) and the Intel OpenCL com-
piler, respectively. The generic backend contains the most
sophistication in terms of interpreting the representation
and delegating code generation tasks, whereas the two spe-
cialized components are primarily concerned with vendor-
specific semantics (e.g., how processing elements and mem-
ory interfaces are expressed) and syntax (e.g., vector data
types and stream objects). In particular, the highly restricted
syntax supported by OpenCL requires more verbose syntax
to be emitted than for backends that support C++. DaCe
also supports tasklets with embedded RTL code: in this
case, both HLS and RTL kernels are generated, and then
combined together in the final bitstream [10].

2.2 Parallelism, Pipelining, and Unrolling with Maps
Representation. Parallel sections in SDFGs are expressed
via the map construct, appearing as a pair of entry/exit
nodes opening/closing scopes (one map is present in the
black box, and two in the purple box in Figure 3). In
software, these scopes can be used to target multi-core and
SIMD parallelism for both CPUs and GPUs. In hardware,
we distinguish between two ways of exploiting the paral-
lelism implied by maps: pipelined maps, where iterations are

copy_to_device

A B C

A_device B_device C_device

mm

A_device B_device

C_device

A_pipe B_pipeC_pipe

A_pipe

B_pipe

C_pipe

read_b[n=0:N, k=0:K, m=0:M]

read_b[n=0:N, k=0:K, m=0:M]

read_b

outer_map[n=0:N]

outer_map[n=0:N]

inner_map[k=0:K, m=0:M]

inner_map[k=0:K, m=0:M]

output_buffer

output_buffer

A_reg

A_reg

multiply_accumulate

copy_to_host

C_device

C

Fig. 3. Kernel state with four processing elements (right), with pre- and
post-states (left) copying memory between host and device.



3

1void mm(float *A, float *B, float *C,
2 int n) {
3 // ...interface pragmas omitted...
4 #pragma HLS DATAFLOW
5 DATAFLOW_INIT();
6 dace::FIFO<float, 1, 4> A_pipe[P+1];
7 dace::FIFO<float, 1, 1> B_pipe[P+1];
8 dace::FIFO<float, 1, 1> C_pipe[P+1];
9 DATAFLOW_FUNCTION(read_A, A, A_pipe, n);

10 DATAFLOW_FUNCTION(read_B, B, B_pipe, n);
11 for (size_t p = 0; p < P; p += 1) {
12 #pragma HLS UNROLL
13 DATAFLOW_FUNCTION(compute, p, A_pipe,
14 B_pipe, C_pipe, n);
15 }
16 DATAFLOW_FUNCTION(write_C, C, C_pipe, n);
17 DATAFLOW_FINALIZE();
18}

Fig. 4. Processing elements are function calls in a top-
level function in the Vivado HLS paradigm.

1hlslib::ocl::Kernel kernels[] = {
2 program.MakeKernel("read_A", A, n),
3 program.MakeKernel("read_B", B, n),
4 program.MakeKernel("compute", n),
5 program.MakeKernel("compute_1", n),
6 program.MakeKernel("compute_2", n),
7 program.MakeKernel("compute_3", n),
8 program.MakeKernel("write_C",
9 C, n)};

10std::vector<cl::Event> events = {
11 kernels[0].ExecuteTaskFork(),
12 kernels[1].ExecuteTaskFork(),
13 kernels[2].ExecuteTaskFork(),
14 kernels[3].ExecuteTaskFork(),
15 kernels[4].ExecuteTaskFork(),
16 kernels[5].ExecuteTaskFork(),
17 kernels[6].ExecuteTaskFork()};
18cl::Event::waitForEvents(events);

Fig. 5. Processing elements are launched from
host code in the Intel OpenCL paradigm.

mm

read_A

read_A

A_device

A_pipe

read_A

read_B

read_B

B_device

B_pipe

read_B

A_pipe

A_pipe

B_pipe

B_pipe

C_pipe

C_pipe

n0

n0

k

k

buffer_A

buffer_A

m

m

write_C

write_C

A_reg

C_buffer

C_buffer

buffer_a

multiply_add

write_c

unroll_compute

unroll_compute

C_pipe

C_device

Fig. 6. Multiple processing elements, in-
cluding a parametrically sized systolic array.

executed in sequence, but exploit pipeline parallelism in the
mapped computation; and unrolled maps, which represent
parametrically replicated hardware, such as systolic arrays
(see Section 2.6) or SIMD-style vectorization. The purple box
in Figure 3 contains an inner map, which will be generated
as a pipelined inner loop, and an outer map over tiles,
orchestrating the buffering behavior.

Code generation. In an SDFG with any number of nested
map scopes, code generation follows the philosophy that
anything that is not explicitly unrolled should be pipelined.
The Intel OpenCL compiler does this automatically, but for
the Xilinx backend, the graph is traversed from outermost
to innermost nesting to detect the innermost map that is not
unrolled, where a pipeline pragma will be injected inside
the generated loop. Furthermore, loop coalescing pragmas
are automatically injected whenever loops generated from
maps are perfectly nested, and when necessary, pragmas to
ignore dependencies (see Section 2.7). Maps designated as
being unrolled will annotate the generated loops with the
vendor-specific unroll directive.

2.3 Representing FPGA Kernels
Representation. The pure dataflow representation of SDFG
states is a natural fit for mapping to streaming dataflow ker-
nels on FPGA. When traversing the SDFG, the framework
detects states that only access memory situated on the FPGA,
designating these as FPGA kernels. Although kernels are
always mapped from pure dataflow states, coarse-grained
control flow is still achievable by embedding nested SDFGs
in the dataflow state. Moving data between the host and
device is represented as memory copies in the representa-
tion. Access nodes are annotated with a data location. When
connected by direct data-to-data edges in a dataflow state,
this will result in the appropriate copy operation depending
on both source and destination. Streaming transfers can be
natively represented using stream access nodes, but due to
the OpenCL abstraction adopted by both the Xilinx and
Intel toolflows, the backend currently only supports bulk
transfers. Host/device streaming will be introduced once
either backend exposes sufficient support to end-users (e.g.,
using the QDMA [11] subsystem for Xilinx FPGAs).

Code generation. When the code generation traversal
encounters an FPGA kernel according to the aforementioned

storage and execution predicate, the dataflow section is
dispatched to the FPGA backend. Before continuing the
traversal to generate the hardware itself, the kernel “bound-
ary” is generated by inferring the necessary arguments that
must be passed to the resulting OpenCL kernel launch(es).
Interaction with the OpenCL API is wrapped in the interface
provided by the hlslib [12] C++ library, as shown in Figure 5.

2.4 Processing Elements
Representation. The notion of partitioning the functionality
of a kernel into multiple independently-scheduled modules,
commonly referred to as processing elements (PEs), is central
to designing large FPGA architectures. Native support for
this concept is thus a core consideration in the SDFG repre-
sentation. At the same time, this should not introduce new
FPGA-specific concepts to the representation.

SDFG states imply pure dataflow by representing data
movement and data dependencies (e.g., everything con-
tained in a blue rectangle Figure 3 or Figure 6), the latter of
which must be respected by the code generating backend.
When a dataflow graph contains more than one weakly
connected component (i.e., at least two subgraphs G0 and G1

with no dataflow edge (u, v) connecting any node u∈G0

with any node v∈G1), the backend has the liberty to schedule
each weakly connected component in parallel. For software back-
ends, this can enable launching multiple concurrent GPU
kernels, or running different concurrent tasks on multiple
CPU threads. When appearing within an FPGA kernel, these
are also scheduled as independent “tasks”, exposing the
concept of processing elements to the programmer. In the
example in Figure 3, each of the four connected components
represent an independent processing element scheduled
in parallel: the components in the red and the black box
are memory reader/prefetcher modules, which read from
arrays (solid borders) in off-chip memory into data streams
(dashed borders). The red box is a simple copy of the full
array dimensions, implemented by a single dataflow edge,
where the black box repeats multiple reads of the array,
using a map to generate the desired access pattern. The blue
box inversely writes from a stream back to memory.

Code generation. In the Vivado HLS toolflow, pro-
cessing elements are expressed by annotating a scope in
the C++ code with the DATAFLOW pragma, resulting in



4

every loop and function call in the scope to be sched-
uled as a distinct processing element. This requires a top-
level “entry” function that contains the processing ele-
ments, is annotated with additional pragmas that desig-
nate the hardware interfaces used by the kernel to in-
teract with the FPGA shell, and instantiates the on-chip
streams (i.e., FIFOs) that facilitate inter-PE communication,
shown for an example in Figure 4. The Xilinx backend
uses the simulation extensions from hlslib [12] (providing
the HLSLIB_DATAFLOW_FUNCTION macro wrappers and
the thread-safe and bounded hlslib::Stream class) to
achieve actually concurrent simulation of parallel processing
elements, including support for feedback/back-edges in the
dataflow. The Intel OpenCL flow takes a different approach:
rather than being contained in a top-level function, every
processing element must be expressed as a separate OpenCL
kernel in the top-level scope, where they are connected
using global channel objects. Launching each processing
element is thus done from the host code, shown in Figure 5.
These two methods of expressing kernels thus affect both
the host code (which kernels are generated and launched)
and the kernel code (one vs. multiple top-level kernels,
global channel objects vs. local stream objects). If a gener-
ated OpenCL kernel has no arguments, it will be generated
as an “autorun” kernel, which is always active and will
run whenever data is available on the connected channels,
and thus does not need to be invoked from the host code.

2.5 Channels/Streams/FIFOs

Representation. Streams are a native data container con-
struct in the SDFG representation, representing first-in, first-
out queues, which can be used to communicate between
subgraphs in dataflow sections. In CPU and GPU codes,
these are employed as single- or multi-producer queues: for
example, a breadth-first search kernel can produce tasks to
a queue that is consumed by multiple workers, dynamically
distributing work. Stream semantics are the same in FPGA
kernels, but with additional constraints due to the under-
lying hardware implementation that they imply: streams
cannot be unbounded, and must be single-producer, single-
consumer. Streams facilitate communication between pro-
cessing elements, while simultaneously acting as synchro-
nization primitives between kernels through the producer-
consumer relationship. Even though the components in
Figure 3 do not have dataflow edges between them, they
synchronize by pushing/popping the same stream data
container.

Because all data movement is explicitly captured in
the SDFG, programmers can benefit from the information
annotated on dataflow edges to verify the correctness of
producer/consumer relationships, which are automatically
inferred by the tool based on the access pattern expressed
by map scopes in the graph. Figure 7 shows the annota-
tion of a dataflow edge written by the processing element
prefetching the matrix B from Figure 6 into the stream
object B_pipe, and the corresponding read from B_pipe
within the processing element. The matrix of size K×M is
read N/P times, where P is the tile size introduced by the
systolic array (see Section 2.6), resulting in a data volume of
K ·M · NP annotated on the dataflow edge/memlet.

read_B[n=0:N/P, k=0:K, m=0:M]

B_pipe

B_pipe[0]
Volume: K*M*ceiling(N/P)

A_pipe B_pipe C_pipe

n0[n0=0:N/P]

unroll_compute[p=0:P]

B_pipe[p]
Volume: K*M*ceiling(N/P)

Fig. 7. Data movement volume annotations on the producer (left) and the
consumer (right) of a stream, used to verify correctness of the program.

Code generation. Due to the distinct methods of ex-
pressing processing elements, the semantics of allocating
streams varies significantly between the Xilinx and Intel
backends. When generating Xilinx code, streams are emitted
in the top-level kernel function as local objects, where they
must be passed as arguments to the producer and consumer
accessing them (see Figure 4). For Intel OpenCL codes,
they must be emitted to the global kernel scope, where the
appropriate producer and consumer will read them directly
(i.e., rather than receiving them as arguments).

2.6 Parametric Processing Elements: Systolic Arrays

Representation. Systolic arrays [13] are a powerful pattern
to express parametric parallelism through deep pipelines,
and are the most potent source of parallelism on modern
FPGAs [2] when applicable. SDFGs expose this pattern
through unrolled maps in the outermost FPGA kernel scope,
with a parametric — but compile-time specialized — num-
ber of iterations, coupled with arrays of stream objects.
When such a map is unrolled, each instance semantically
becomes a weakly connected component in the state, re-
sulting in them being instantiated as separate processing
elements according to the semantics in Section 2.4. This is
equivalent to any other map construct in the SDFG: namely,
they represent independently executable replications of the
contained subgraph (unrolled maps can occur at any level
of nesting in the program), but are recognized as a special
case in the top-level scope of an FPGA kernel.

An SDFG implementing a one-dimensional systolic ar-
ray for matrix multiplication (C = A×B) is shown in
Figure 6, where the map nodes annotated by red borders
instantiate the systolic array. Each element implements the
same content (highlighted), but reads from a distinct index
in three arrays of stream objects (“pipes”) for A, B, and C,
respectively. Since every processing element is only con-
nected to the previous and the next, they must pass data
along the chain [14] from the head towards the tail. The
processing elements implement a simply buffering scheme
where each element stores one element of A in a local buffer,
then streams over the full B matrix, before writing back a
complete output tile of C. This simple SDFG already yields
364 and 188GOp/s with 8k×8k matrices when compiled
for an Intel Stratix 10 and a Xilinx Alveo U250 board, respec-
tively, with much potential for additional optimization [14].

Code generation. Systolic array code generation varies
between vendors due to the different ways of expressing
processing elements. In Xilinx codes, it is sufficient to unroll
a loop in the C++ kernel code with bounds known at
compile time, letting constant propagation fix all the indices
in each instantiation to lay out the systolic array, as shown



5

@ operator

Matrix-matrix 
product

Matrix-vector 
product

Vector-vector 
product

Batched matrix 
product

cuBLAS
Xilinx 
FPGA

Intel 
FPGA

Intel MKL

Optimized streaming 
implementation

res = M @ v

Detected from input dimensions

Selected by engineer

Fig. 8. Multiple levels of nested Library Node expansions.

in Figure 4. For Intel, the OpenCL kernel itself is replicated
and specialized directly in the code generator (see Figure 5).

2.7 Memory Hierarchy

Representation. Not all data movement is born equal:
dataflow can have significantly different performance im-
pact depending on the location and storage type of the
source and destination, even though the number of bytes
moved are the same. The FPGA backend exposes global
memory, which represents data present in off-chip, memory-
mapped storage such as DDR or HBM; local memory,
representing any on-chip memory implementation such as
registers, BRAM/M20K, LUTRAM, or UltraRAM (left up
to the HLS compiler); registers, which is a subset of lo-
cal memory, but forces the HLS compiler to allow fully
parallel read/write access to every entry of the container;
and experimental support for shift registers, implementing
cyclic buffering patterns with multiple access points (na-
tively supported by Intel OpenCL). Combining these allows
implementing highly specialized memory hierarchies, as
well as host/device interaction, in a way that is compatible
with both Xilinx and Intel devices.

Code generation. Local memories can be emitted as
regular C arrays directly in the kernel code, while off-
chip memory is allocated with API calls in the host code
and passed to the kernel arguments. The FPGA backend
gives the underlying HLS compilers additional scheduling
freedom by generating a distinct pointer argument for every
access to the same DRAM memory container present in the
kernel and marking them as restrict in OpenCL, such
that every read and write can be performed independently,
which is safe due to SDFG semantics.

Whenever both reads and writes are emitted to local
memory, and the write is not marked as a potential conflict,
the generated code is annotated with pragmas to instruct
the compiler to ignore dependencies (HLS DEPENDENCE
for Xilinx and ivdep for Intel). This is implied by SDFG
semantics, where these accesses are either in dataflow sec-
tions (where conflicts must be annotated), or in control flow
scopes, that are inherently sequentialized.

3 MULTI-LEVEL DESIGN WITH LIBRARY NODES

SDFGs provide a data-centric view of the implemented
application, enabling a wide range of optimization oppor-
tunities [3], which can be exploited using graph-rewriting

transformations on the SDFG. Some optimizations, how-
ever, arise from knowledge about the underlying applica-
tion domain (for example, algebraic identities), which are
difficult or impossible to express generally without en-
coding domain-specific knowledge into the representation.
To accommodate such domain-specific optimizations, we
will use Library Nodes to represent an abstract behavior
(the “what”) on the incoming/outgoing data connectors
(as opposed to a concrete implementation of this behav-
ior, the “how”). Library Nodes are expanded by replacing
them with a subgraph, “lowering” them towards a concrete
implementation of their behavior. During this expansion, Li-
brary Nodes can inspect their context using the surrounding
memlets and nodes, which may change the structure of the
expanded subgraph, e.g., by checking if inputs or outputs
are streams or if the use vector types.

For example, in a neural network program, a Library
Node can represent a convolution applied to a given input
format and producing a given output format. However,
which convolution is applied, and how/where it is executed,
can be deferred, exploiting the high level of abstraction to
detect and apply domain-specific transformations. Before an
SDFG can be used to generate code, all Library Nodes must
be fully expanded to native SDFG constructs, but can go
through several levels of lowering [15] before reaching a
fully expanded state.

Domain-specific transformations are not the only oppor-
tunity enabled by the Library Node abstraction. The ability
to nest levels of decreasing abstraction make Library Nodes
a versatile tool to achieve a number of tasks. An example is
included in Figure 8: a linear algebra-aware frontend pro-
duces an SDFG containing a generic matrix multiplication
operator Library Node (top); once expanded, the Library
Node can delegate itself to a number of different linear
algebra operations, depending on the dimensionality of the
two operands; finally, the performance engineer can choose
either a generic implementation, or one specialized for a
specific backend. For example, they may choose an FPGA-
specific streaming implementation specialized for Xilinx
FPGAs (or a generic FPGA implementation).

In the following, we use two composite linear algebra
kernels from the extended set of BLAS subprograms pro-
posed by Blackford et al. [16] to demonstrate the multi-level
design process using SDFGs and the DaCe framework.

3.1 High-Level Domain-Specific Frontends

To develop programs using the SDFG representation, pro-
grammers can use high-level frontends, rather than using
the low-level graph API to create SDFGs directly. For exam-
ple, the DaCe framework itself exposes a Python frontend
supporting NumPy [17], and with BLAS extensions. Calling
BLAS routines or using linear algebra operators on NumPy
arrays will emit BLAS Library Nodes in the resulting SDFG,
which can later be expanded to the desired implementation:
e.g., direct function calls to MKL, cuBLAS, or OpenBLAS,
or specialized SDFG subgraphs targeting a specific architec-
ture.

Figure 9 shows AXPYDOT, a small composite BLAS ker-
nel, summing two input vectors, then taking the dot product
with the resulting vector and a third input vector. The



6

1n = dace.symbol("n")
2a = dace.symbol("a", dtype)
3

4@dace.program
5def axpydot(x: dtype[n], y: dtype[n],
6 w: dtype[n], result: dtype[1]):
7 z = np.ndarray([n], x.dtype)
8 blas.Axpy(a, x, y, z)
9 blas.Dot(z, w, result)

Fig. 9. Implementation of AXPYDOT using the standard
DaCe Python frontend and BLAS library calls.

x y

z

axpy

w

result

dot

Fig. 10. Generic SDFG
computing AXPYDOT.

axpydot

fpga_x fpga_y

fpga_w

fpga_result

fpga_z

axpy

dot

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

Fig. 11. The SDFG from Figure 10 automatically trans-
formed for FPGA execution.

SDFG emitted by the frontend for this code is shown in
Figure 10. The BLAS operators are instantiated as the axpy
and dot Library Nodes, reading and writing from arrays.
The two kernels exchange data through the array z, which
will be first written by axpy and then read by dot, in
sequence. Kernels that are composed of BLAS level 1 and
2 routines, such as AXPYDOT, are fully memory bound, but
expose a promising opportunity for streaming computation
by pipelining temporaries directly between subroutines [18]
on the FPGA, which we will exploit in the following.

3.2 Mid-Level FPGA Transformations
SDFGs can be specifically engineered to target FPGAs, by
writing them using the graph API. Alternatively, DSLs
that target FPGAs, such as StencilFlow [5], can directly
emit FPGA-specific graphs. Finally, existing SDFGs can be
transformed from a generic implementation to an FPGA
implementation using graph transformations. Any of these
approaches will result in graphs that can be further opti-
mized using general-purpose transformations available in
the DaCe toolbox. This includes platform-agnostic transfor-
mations such as map tiling, inserting fast memory buffers,
or removing redundant memory accesses [3]; and more
FPGA-oriented transformations, which we describe here.

3.2.1 Transforming a Subgraph into an FPGA Kernel
If the input is a generic graph that has not yet been targeted
to FPGAs, programmers can automatically offload a full
SDFG or a specific subgraph for FPGA execution using the
FPGATransformSDFG and FPGATransformState trans-
formations, respectively, provided in the DaCe framework.
These detect all DRAM accesses in the target graph or
subgraph, then create additional pre- and post-states per-
forming memory transfers between host and device. The
memories accessed by the transformed subgraph are re-
placed with their FPGA equivalents.

Figure 11 shows the AXPYDOT example from Figure 10
after applying the FPGATransformSDFG transformation.
Occurrences of the DRAM memories x, y, and w and
replaced with corresponding FPGA memories fpga_x,
fpga_y, and fpga_w in the kernel graph, the memories
are copied to the FPGA before the kernel is executed in the
state pre_axpy, and the output array result is copied
back in the state post_axpy. This program can already be
generated and compiled for both Xilinx and Intel boards.

3.2.2 Memory Access Extraction
When the memory access pattern of a certain computation is
known, it is often beneficial to stream the data into the FPGA

processing elements. Creating streaming accessors has many
benefits [2], including making use of burst-mode in mem-
ory controllers, tailored buffering for pipelined execution,
broadcasting off-chip memory to multiple processing ele-
ments, or customizing caching mechanisms.

In DaCe, extracting a streaming pattern from an existing
memory access to a streaming access is performed via
the StreamingMemory transformation. The transformation
processes the outgoing (or incoming) memlets of a certain
data access node, finding all recurring access patterns of
unique symbolic expressions. If the range consists of one
scalar or vector element, the transformation can be applied.
It then extracts the read (write) out of the computation
by introducing another component that accesses the mem-
ory in the same order as the computation, and pushes it
onto a stream (or pops computation outputs and stores re-
sults). The corresponding outgoing/incoming memlets are
replaced by memlets that access the stream instead. If more
than one PE uses the same memory access order, the trans-
formation generates a single streaming component that con-
nects one array node to multiple streams. In order to avoid
deadlocks, the transformation also detects dependencies by
computing reachability from the destinations/sources of the
memlet paths (inherently given by the construction of the
SDFG). If accesses are dependent, separate components are
created, even for the same access pattern.

3.2.3 Pipeline Fusion
Following streaming the endpoints of a computation, we
also consider streaming composition of consecutive compu-
tations. In unoptimized SDFGs, intermediate data is repre-
sented as data access nodes, pointing to off-chip memory
by default. This round-trip is undesirable, and in certain
computations can be completely avoided by fusing the two
underlying pipelines into one.

The StreamingComposition transformation is similar
in structure to memory access extraction, but checks for
array nodes with in-degree and out-degree of one, which
contain equivalent access orders that can be composed. To
do so, the transformation traces the memlet path through
map/pipeline scopes and nested SDFGs, canonicalizing
the memlets’ symbolic expressions by remapping symbol
names to indices. If the ranges of the iteration spaces match
exactly, and the symbolic expressions are equal, the result of
the first computation can be streamed into the second. Simi-
larly to StreamingMemory, we replace the memory access
nodes and neighboring memlets with streams, converting
global memory arrays into local streams.



7

axpydot

fpga_x fpga_y

fpga_w

fpga_result

axpy

axpy

axpy_task

dot_input_xdot_input_y

stream

stream

multiply

dot_product dot_reduce_vector

dot_reduce_vector

unroll

unroll

reduce_vector

dot_reduce_buffer

dot_reduce_buffer

zero

sum

fpga_y_0

fpga_x_0

read_x

read_x

read_fpga_x_0

fpga_x_0

fpga_y_0

read_y

read_y

read_fpga_y_0

fpga_w_0

fpga_w_0

read_w

read_w

read_fpga_w_0

fpga_z_0

fpga_z_0

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

Fig. 12. The AXPYDOT program after automatically extracting memory
accesses into processing elements and streaming between operators.
Streams are color-coded by name for pipeline visualization.

3.2.4 Putting it All Together
An example that uses all mid-level transformations
can be seen in Figure 12. Manually applying
FPGATransformSDFG, StreamingMemory on x, y, w
and StreamingComposition on AXPYDOT yields
fully pipelined execution. The same transformations
can be applied automatically, in a scheme which we
perform for our applications in Sections 4–6. However, the
transformations must be attempted at a certain order in
order to apply. First, the input SDFG must be transformed to
FPGA-based computation (FPGATransformSDFG). Then,
the data can be vectorized to the desired length (using
Vectorization), which the Library Nodes use to control
unrolling and accumulation factors upon expansion. After
expanding the Library Nodes, the memory access patterns
of each computation is exposed, and StreamingMemory
and StreamingComposition can be applied. Lastly, the
memory assignment to banks can be tweaked by inspecting
the dataflow of the SDFG.

The resulting SDFG is capable of generating separate
modules for efficiently reading/writing off-chip memory,
using the stream construct as a FIFO queue to connect
pipeline stages. In the rest of this section, we describe how
the Library Nodes and can be further specialized depending
to the target FPGA vendor.

3.3 Platform Specialization
While it is possible (and often sufficient) to implement
operators with a generic SDFG subgraph, it can be desir-
able to specialize the implementation of an operation to a
specific target. This can simply mean calling an external
high performance implementation, such as cuBLAS, or it can
mean a specialized native DaCe graph expansion. Because
of the differences in capabilities between Intel and Xilinx
architectures, such specializations prove useful in practice.

3.3.1 Floating Point Accumulation
For computations that need to perform accumulation, such
as the DOT operator used in Figure 10, it is beneficial to
specialize the computation based on whether the underlying
architecture supports accumulation on the given data type.

axpydot

fpga_x fpga_y

fpga_w

fpga_result

fpga_z

axpy_map

axpy_map

axpy_task

dot_input_x dot_input_y

stream

stream

multiply

dot_product dot_reduce_vector

dot_reduce_vector

unroll

unroll

reduce_vector

dot_partial_sums

dot_partial_sums

partial_sum

reduce

reduce

reduce

dot_reduce

dot_reduce

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

axpydot

fpga_x fpga_y

fpga_w

fpga_result

fpga_z

axpy_map

axpy_map

axpy_task

dot_input_x dot_input_y

stream

stream

multiply

dot_product dot_reduce_vector

dot_reduce_vector

unroll

unroll

reduce_vector

dot_reduce_buffer

dot_reduce_buffer

zero

sum

pre_axpydot

x

fpga_x

y

fpga_y

w

fpga_w

post_axpydot

result

fpga_result

Fig. 13. AXPYDOT expanded for Xilinx (left), using a partial sum and
reduce phase, and for Intel (right), accumulating into a single register.

Intel Arria 10 and Stratix 10 architectures supports native
32-bit floating point accumulation, which allows a stream
of floats to be directly summed into an output register.
Contemporary Xilinx FPGAs, such as the Alveo U250, do
not have native 32-bit floating point units, and cannot
directly accumulate floating point numbers into a single
register, as this results in a loop-carried dependency induced
by the multiple-cycle latency of the addition operation.
For 64-bit floating point, neither Xilinx nor Intel support
accumulation, and both must address the issue of loop-
carried dependencies.

To avoid the loop-carried dependency for DOT, we can
perform accumulation interleaving [2] by summing the in-
coming data into a number of partial sums, stored in a
buffer of a size larger than the latency of the addition
operation. In Figure 13, the AXPY and DOT operators have
both been expanded for Xilinx (left) and Intel (right). AXPY
uses a generic implementation (identical to the CPU im-
plementation), while DOT is implemented using specialized
expansions depending on the target architecture. The Xilinx-
targeted expansion uses a partial sum strategy to resolve
the loop-carried dependency, using two unrolled maps. The
first (“unroll”) sums up all entries of the vector containing
the product of contributions from x and y using a fully
unrolled circuit (i.e., W−1 adders, where W is the vectoriza-
tion width), resulting in a single element contribution. This
contribution is added into the partial sum buffer, accessed
with a cyclic index. The second unrolled map (“reduce”) is
performed after the main streaming phase, and sums up all
values in the partial sums buffer into a single output, which
is written to the output (again consuming W−1 adders. In
a resource-constrained scenario, this could be reduced to
a single adder without impacting the asymptotic runtime).
The Intel specialization instead accumulates into a single
register, saving the partial buffer and additional reduction.

3.3.2 Shift Registers

For Intel FPGA, we can use shift registers to achieve the
sliding window-style buffering pattern required for stencil
computations. This is a powerful abstraction that is desir-
able to exploit by the Intel FPGA backend, but does not (as
of writing) exist in Vivado HLS. In Section 6.2, we show



8

TABLE 1
Performance of AXPYDOT on the Alveo U250 (Xilinx) FPGA.

Naı̈ve HLS in DaCe Streaming Transformations

3.57± 0.15 GB/s 9.34± 0.03 GB/s

how — with some additional effort — the shift register
pattern can be imitated for stencil computations on Xilinx,
by implementing a Xilinx-specific expansion using explicit
buffers between each access point.

3.3.3 Specializing SDFGs vs. Hand-Written Code
Targeting low-level aspects of the HLS tools, such as floating
point accumulation and shift registers, raises the question of
whether there is even any benefit of using the Library Node
expansion abstraction versus writing these specializations
by hand. While embedding hand-written HLS code inside
SDFGs is indeed supported natively by the framework,
implementing the specializations as graph expansions come
with a significant benefit of malleability, analyzability, and
potential for reuse. Malleability, because the expanded sub-
graph can be further transformed by the DaCe framework:
for example, to tile the internal maps, or to add/change sizes
and constants, such as input size and vectorization width.
Analyzability, because the graph view gives an overview of
the computational structure, and allows inspecting data vol-
umes on dataflow edges (e.g., to detect producer/consumer
mismatches). Potential for reuse, because even specialized
codes can potentially be reused between platforms or ven-
dors – for example, using the partial sums implementation
of DOT to reduce 64-bit floating point numbers on an In-
tel platform, without writing any additional code. Finally,
staying within the SDFG representation lets the program
benefit from the powerful code generating backends, which
are continuously improved and updated to work seamlessly
with the newest versions of the HLS toolflows.

4 CASE STUDY: LINEAR ALGEBRA

We have seen the multi-level design methodology applied
to the AXPYDOT example throughout Section 3. We addition-
ally show how this flow can reproduce the composite BLAS
kernel GEMVER evaluated by FBLAS [18], using our multi-
level SDFG design. In the following, we evaluate kernels
on a Xilinx Alveo U250 accelerator board, compiled using
Vitis 2020.2 for the xilinx_u250_xdma_201830_2 shell,
and using the Xilinx Runtime (XRT) version 2.5.309. Results
were measured 10 times, the median and 95% nonparamet-
ric confidence intervals are listed as errors.

4.1 AXPYDOT Evaluation

The result of the AXPY/DOT BLAS operation composition
are listed in Table 1. As the program is bandwidth-bound,
we list the attained bandwidth of AXPYDOT when run
with an input buffer of 800 MiB (209,715,200 elements).
The table shows that the streaming transformations, which
are applied automatically, are able to stream all memory
accesses, and fuse the AXPY and DOT pipelines. This is
a promising result for FPGA programs in general, since

the transformations detected the access patterns directly
and did not employ application-specific knowledge. As for
generated code length, the naı̈ve version generates one
module (processing element) and 139 lines of code, whereas
the streamed version generates 5 separate modules and 207
lines of code. All in all, this contributes to a 2.6× speedup
of the streamed version over the original input graph.

4.2 GEMVER Optimization and Evaluation
The GEMVER application is a composition of several BLAS
operations used in solving systems of equations. Its SDFG
is shown in Figure 14. Specifically, GEMVER performs two
rank-1 updates (GER), a transposed matrix-vector multipli-
cation (GEMVT), and another matrix-vector multiplication
(GEMV), both using different access patterns.

A u1 v1

B

ger

u2 v2

C

ger

y

z

gemv

z

w

gemv

T

Fig. 14. GEMVER SDFG.

There are several approaches
that can be taken to layout this
complex composition [18], stem-
ming from the difference in ac-
cess patterns between the two
GEMVs, and the inability to di-
rectly stream the result of the
two rank-1 updates into both
matrix-vector multiplications at
the same time. Thus, malleabil-
ity plays a key role for GEMVER
optimization.

In DaCe, Library Nodes can
be expanded in multiple ways,
depending on the target platform
and the parameters of the node
(i.e., whether an array is trans-
posed). For GER, vectorized ex-
pansion would only apply if the
matrix and the first or second vector are vectorized, but not
both. In order to compose the operators GEMVER, the per-
formance engineer must match the tiling schemes between
them: for the transposed GEMV, a scheme that streams in tiles
by columns matches the output of GER, while the second
GEMV can use a row-major scheme. Once the access patterns
match, the array z can automatically be streamed by the
mid-level transformations.

Data movement for the two consumers of C can be
significantly reduced by both pipelining and storing it in off-
chip memory for later use. As mentioned in Section 3.2.3,
streaming composition only works if there are no other
uses of the array. However, the performance engineer can
manually replicate C (interactively or programmatically)
following Library Node expansion, creating the possibility
to apply pipeline fusion once more, which would remove
one of the replicas of C in favor of a stream.

TABLE 2
Performance of GEMVER on the Alveo U250 (Xilinx) FPGA.

Version Runtime [s] Off-Chip Volume

Naı̈ve SDFG 1.10±0.029 6.0 GiB (—)
Manual memory banks 1.52±0.000 6.0 GiB (1×)
Streaming composition 0.88±0.004 4.0 GiB (1.5×)
Manual composition 0.74±0.005 3.0 GiB (2×)



9

1import torch.nn as nn
2import torch.nn.functional as F
3

4@daceml.pytorch.dace_module
5class LeNet(nn.Module):
6 def __init__(self):
7 self.conv1 = nn.Conv2d(1, 6, 5)
8 self.conv2 = nn.Conv2d(6, 16, 5)
9 self.fc1 = nn.Linear(256, 120)

10 self.fc2 = nn.Linear(120, 84)
11 self.fc3 = nn.Linear(84, 10)
12

13 def forward(self, x):
14 x = F.max_pool2d(
15 F.relu(self.conv1(x)), 2)
16 x = F.max_pool2d(
17 F.relu(self.conv2(x)), 2)
18 x = x.view(-1, 256)
19 x = F.relu(self.fc1(x))
20 x = F.relu(self.fc2(x))
21 x = self.fc3(x)
22 x = F.softmax(x, dim=1)
23 return x

ONNX_Conv_0

ONNX_Relu_1

ONNX_MaxPool_2

ONNX_Conv_3

ONNX_Relu_4

ONNX_MaxPool_5

ONNX_Reshape_7

ONNX_Gemm_8

ONNX_Relu_9

ONNX_Gemm_10

ONNX_Relu_11

ONNX_Gemm_12

ONNX_Softmax_13

Fig. 15. LeNet-5: PyTorch module (left) and corresponding SDFG (right,
array nodes are hidden for brevity).

Results of GEMVER with N=16,384 are shown in Table
2. As our baseline already uses vector width of 16 ele-
ments, tiled computation, and the matching Library Node
implementations, the differences in performance are not
substantial. The example shows the importance of streaming
composition: when memory banks are manually chosen to
maximize bandwidth the program is slower. Performance
only improves when the accesses are streamed and com-
posed. Using the manual replication of C yields an ad-
ditional improvement in performance: a 2× reduction in
memory movement and 1.49× reduction in overall runtime.

5 CASE STUDY: MACHINE LEARNING

We present the multi-level design methodology for FPGAs
in the context of a machine learning application, utilizing
the ONNX frontend of DaCe.

5.1 ONNX Domain-Specific Frontend

DaCeML1 is a data-centric machine learning framework [19]
based on DaCe. The framework exposes the operators of
the Open Neural Network eXchange (ONNX) IR as Library
Nodes, and provides a collection of implementations for
each operator, specialized for CPUs, GPUs, and FPGAs. As a
case study, we present the process of lowering a PyTorch [20]
model, implementing Deep Learning inference with the
LeNet-5 convolutional model [21], to an SDFG that can be
executed on either FPGA vendors. Using DaCeML, we gen-
erate ONNX files and SDFGs from PyTorch neural network
modules with a single-line Python decorator (Figure 15).

DaCeML includes domain-specific transformations that
are difficult or impossible to implement at the lower levels
of the SDFG IR. To optimize for FPGAs, we develop and
employ the InputToConstant transformation. DaCeML
SDFGs typically receive both their inputs and parameters
as arrays. For inference, those parameters can be fixed in
hardware. This FPGA specific transformation converts a

1. https://github.com/spcl/daceml

parameter array of the model to a compile-time constant.
The transformation first verifies that the parameter array
is never written to, then removes the input by traversing
the edges, removing all corresponding memlets and access
nodes. This domain-specific transformation requires knowl-
edge of the parameter values, which are obtained from
PyTorch.

5.2 Lowering to FPGA
After applying the FPGATransformSDFG (see Section 3.2.1)
for offloading the execution of the SDFG on FPGA, each of
the Library Node is expanded to a nested SDFG optimized
for spatial architectures. These expansions employ a range
of optimizations. Convolutions (“Conv”) are implemented
by using the image to column (im2col) approach [22]. There-
fore, the convolution and GEMM expansions rely heavily on
the systolic matrix multiplication shown in Section 2.6. The
activation function (“ReLU”) is an element-wise operation,
and can be expressed by nested maps. The MaxPool imple-
mentation uses a sliding window, implemented using shift
registers. All the network operators operate on single preci-
sion floating point, and can accept data either from off-chip
memory or streamed in from on-chip memory. The latter
opens up to the possibility to streaming among operators,
such as between convolution, activation and sub-sampling
(blue dashed boxes in Figure 15), allowing a reduction of
I/O through pipelined execution of sections of the graph.
Figure 16 show the program SDFG obtained by applying
the general StreamingComposition transformation (de-
scribed in Section 3.2.3 to automatically achieve this).

5.3 Evaluation
For the evaluation, we target the BittWare 520N PCIe at-
tached board, with an Intel GX 2800 Stratix 10 processor,
equipped with 4× DDR4 memory banks. The OpenCL code
generated from DaCe is compiled with version 20.3 of the
Intel FPGA OpenCL SDK and 19.4 of the Quartus compiler.
We consider a batch size of 1,000 for our experiments. As
reference, we use the inference time of running the input
PyTorch model on CPU. We target a 36C/72T Intel Xeon
Gold 6154 and PyTorch v1.6.0. Inference is measured at
56.2 ± 0.0433 ms and 14.4 ± 0.0447 ms for 1 core and 36
cores, respectively. We evaluate the different transforma-
tions applied to the SDFG in Table 3, showing a speedup

fpga_ONNX_12_0fpga_ONNX_12_0

ONNX_FPGA_13

ONNX_MaxPool_2 [b=0:1000, c=0:6, in_y=0:24, in_x=0:3]

fpga_ONNX_14_0fpga_ONNX_14_0

ONNX_Conv_3 [b=0:1000, n=0, cin=0:6, hx=0:5, hy=0:5, x=0:8, y0=0]

fpga_ONNX_Input_10

fpga_ONNX_11_0fpga_ONNX_11_0

fpga_ONNX_12_0fpga_ONNX_12_0

ONNX_Conv_0 [b=0:1000, n=0:6, x=0:24, y=0:3]

ONNX_Relu_1 [__i0=0:1000, __i1=0:6, __i2=0:24, __i3=0:3]

fpga_ONNX_11_0fpga_ONNX_11_0

fpga_ONNX_15_0

ONNX_Relu_4 [__i0=0:1000, __i1=0:16, __i2=0:8, __i3=0]

fpga_ONNX_14_0fpga_ONNX_14_0

fpga_ONNX_18

ONNX_MaxPool_5 [b=0:1000, c=0:16, in_y=0:8, in_x=0]

fpga_ONNX_15_0

fpga_ONNX_19_0

ONNX_Gemm_8 [b=0:1000, n=0:256, m=0:15]]

fpga_ONNX_19_0

fpga_ONNX_20

ONNX_Relu_9 [__i0=0:1000, __i1=0:15]

ONNX_Gemm_10 [b=0:1000, n=0:120, m=0:41]]

fpga_ONNX_21_0

fpga_ONNX_21_0

fpga_ONNX_22

ONNX_Relu_11 [__i0=0:1000, __i1=0:41]

fpga_Output

ONNX_SoftMax_13 [__i0=0:1000, __i1=0:10]

fpga_ONNX_23

ONNX_Gemm_12 [b=0:1000, n=0:84, m=0:10]]

fpga_ONNX_23

Fig. 16. The LeNet program after transforming to stream between opera-
tors. Streams are color-coded by name for pipeline visualization. Library
Node expansions are collapsed for readability.

https://github.com/spcl/daceml


10

of 1.87x over the single core CPU implementation. The
InputToConstant transformation yields a speedup over
the original SDFG graph of 3.2× and a reduction of data
movement. By applying the StreamingComposition to
replace intermediate memories with streams, we further
reduce the accessed data volume, and the speedup is in-
creased to 8.8×. This shows how combining domain-specific
and general transformations can yield significant benefits,
and how general transformations are reused across domains
(see examples for applying the transformation to linear
algebra in Sections 3.2.3 and 4).

TABLE 3
Performance of LeNet-5 on the Stratix 10 (Intel) FPGA with inference

batch size 1000.

Version Runtime [ms] Off-Chip Volume

Naı̈ve SDFG 265.8±3.502 0.28 GiB (—)
Input to constant 81.3±1.570 0.22 GiB (1.2×)
Streaming composition 30.1±0.703 0.16 GiB (1.7×)

6 CASE STUDY: STENCILFLOW

StencilFlow [5] is a domain-specific framework built on
top of the DaCe framework, utilizing the full multi-level
design to emit fully pipelined and deadlock free stencil
architectures for complex input programs. In the following,
we describe how each of the levels of optimizations de-
scribed in Section 3 are applied in the context of StencilFlow,
then further exploit the specialization capabilities of Library
Nodes to extend the framework to target Xilinx FPGAs
from the same input programs, even without access to shift
registers.

6.1 Stencil Language and Transformations

StencilFlow defines a specialized stencil DSL, expressed in a
JSON input format, allowing input programs with heteroge-
neous operators, reading from different input data contain-
ers, and with dependencies between them. An analysis tool
parses the operators and maps the dependencies between
them, computes the buffers required to fully pipeline each
operator, then computes the delays between operators to
insert delay buffers between them to prevent deadlocks that
can otherwise be induced by fork/joins in the dependency
graph. An simple example program, implementing two
iterations of the diffusion 2D stencil, is shown in Figure 17.

6.2 Intel and Xilinx Stencil Specialization

StencilFlow presents results for an Intel Stratix 10 FPGA.
The Intel OpenCL compiler is suitable to target stencil
computations, due to the shift register abstraction allowing
easy instantiation of more complex cyclic buffering patterns.
For this work, we show how the StencilFlow stack can be ex-
tended to target Xilinx FPGAs instead, simply by providing
a new stencil node expansion to the stencil Library Node,
with no further changes to the surrounding infrastructure.

Intel OpenCL’s shift register abstraction leaves buffer
management for stencil programs up to the compiler. The
stencil node expansion subgraph for a 2D 4-point stencil

with 4-way vectorization is shown in the left graph in
Figure 18. At every iteration, the shift register buffer is
“shifted” forward by an amount equivalent to the vector
length (blue box, top). Then, a new input vector of data
from the wavefront is written to the front of the shift
register buffer (red box, middle), resulting in the shift reg-
ister containing all data necessary to perform the stencil
computation. Finally, the computation is performed in an
unrolled map over the vector width (black box, bottom),
loading the 4×4 appropriate entries from the shift register
(four accesses in each iteration of the size-4 unrolled map,
although some will overlap in practice), and the result is
written to the output stream.

Xilinx does not expose a scalable shift register abstrac-
tion. Instead, the buffers between each stencil access must
be deduced, instantiated, and accessed explicitly, which is
challenging due to vectorization resulting in non-aligned
accesses into the vector strides. The right graph in Fig-
ure 18 shows a Xilinx expansion, achieving the exact same
computation as the left graph, but without the aid of shift
registers. The 4-point stencil has four access points, which
with 4-way vectorization requires 14 unique offset. Offsets
are computed as the distance from the “earliest access”
relative to the iteration pattern. These offsets are translated
into major indices (which buffer is accessed, according to
the vector stride) and minor indices (indices into each ac-
cessed vector). The major indices become the “access points”
into the vectorized buffers, resulting in 4 buffers for this
example. At each iteration, the buffers are read at a cyclic
index along with the value from the wavefront. Because the
kernel is vectorized, a full vector must be read from each
buffer first, after which the individual scalar elements can
be extracted by the kernel (implemented by the 14 dataflow
edges between the buffers and the computation). Finally,
each buffer is updated with the value from the following
access point, and the front access point (i.e., highest flattened
index) is updated from the wavefront.

While it required a non-trivial effort to implement a
Library Node expansion for Xilinx that implements a stencil
buffering pattern, the payoff is significant: the StencilFlow
frontend and analysis framework, as well as the remaining
SDFG (the memory readers/writers, and the interconnec-
tion between stencils) remains unchanged, and we can now

1{"dimensions": [4096, 4096], "vectorization": 8,
2 "outputs": ["d"], "inputs": {
3 "a": {"data_type": "float32", "input_dims": ["j","k"]},
4 "c0": {"data_type": "float32", "input_dims": []},
5 ...
6 "c4": {"data_type": "float32", "input_dims": []}},
7 "program": {
8 "b": {
9 "data_type": "float32",

10 "boundary": {"a": {"type": "constant", "value": 0}},
11 "computation": "b = c0*a[j,k] + c1*a[j-1,k] +

c2*a[j+1,k] + c3*a[j,k-1] + c4*a[j,k+1]"},↪→
12 "d": {
13 "data_type": "float32",
14 "boundary": {"b": {"type": "constant", "value": 0}},
15 "computation": "c = c0*b[j,k] + c1*b[j-1,k] +

c2*b[j+1,k] + c3*b[j,k-1] + c4*b[j,k+1]"↪→
16}}}

Fig. 17. JSON-based StencilFlow program description.



11

read_a_to_b0

b0_to_write_b0

b0_outer

compute_b0[i=0:128, j=0:32]

compute_b0[i=0:128, j=0:32]

b0_shift

a_in_buffer_in

a_in_buffer_out

shift_a_in[i_shift=0:256]

shift_a_in[i_shift=0:256]

shift_a_in

b0_update

a_in_in

a_in_buffer_out

read_wavefront

b0_compute

b0_compute

b0_compute_unroll[i_unroll=0:4]

b0_compute_unroll[i_unroll=0:4]

a_in_buffer_in

b0_out_out

b0_out_output_buffer

b0_out_conditional_write

a_in b0_a_in_buffer

b0_a_in_buffer b0_out

read_a_to_b0

b0_to_write_b0

b0_outer

compute_b0[i=0:128, j=0:32]

compute_b0[i=0:128, j=0:32]

b0_compute

b0

_a_in

a_in_vector

a_in_scalar

read_a_in

a_in_buffer_0

a_in_input_cast_0

a_in_buffer_1

a_in_input_cast_1

a_in_buffer_2

a_in_input_cast_2

a_in_buffer_3

a_in_input_cast_3

_b0_out

b0_out_output_buffer_scalar

b0_out_output_buffer_vector

write_b0_out

b0_update

a_in_buffer_0

a_in_buffer_1

a_in_buffer_1

a_in_buffer_2

a_in_buffer_2

a_in_buffer_3

a_in_buffer_3

a_in_vector

a_in a_in_buffer_0_outer

a_in_buffer_0_outer

a_in_buffer_1_outer

a_in_buffer_1_outer

a_in_buffer_2_outer

a_in_buffer_2_outer

a_in_buffer_3_outer

a_in_buffer_3_outer b0_out

Fig. 18. Intel (left) and Xilinx (right) stencil node expansions.

directly compile it for Xilinx instead.

6.3 Evaluation

We evaluate the Xilinx stencil expansion on the Alveo U250
accelerator board from kernels produced by the StencilFlow
framework. While the Alveo U250 is a flagship UltraScale+
device, it suffers relative to Intel chips in not having na-
tive floating point units, and from its chiplet-based design,
which limits connectivity between parts of the device. Still,
the large amount of general purpose logic available allows
instantiating large stencil programs.

We benchmark the vectorized Jacobi 3D, diffusion 2D,
and diffusion 3D stencil programs on the Xilinx U250 board
with 32-bit floating point types, using long and narrow
217×4096 and 215×128×128 domains for 2D and 3D, re-
spectively, to emulate time tiled stencils. We plot the results
along with benchmarks on a Stratix 10 board evaluated
by StencilFlow in Figure 19. The plot includes benchmarks
both with and without accessing DRAM, as the Alveo board
was observed to deliver significantly less than the expected
memory bandwidth, despite the burst-friendly access pat-
tern. The U250 yields up to 373GOp/s (300GOp/s) without
(and with) memory, but falls short of the much larger
floating point capabilities of the Stratix 10. The Xilinx stencil
performance yields a 3.2× improvement over the stencil
architecture evaluated in the original work on DaCe [3]
(which used a KU115 board), and a 2.8× over the SODA [23]
framework (ADM-PCIE-KU3 board). Although both these
works use previous generation FPGAs, the domain-specific
StencilFlow stack is responsible for a significant benefit.

Finally, we include preliminary results on the U250 for
executing horizontal diffusion, a large real-life weather sim-
ulation stencil program [5], which contains a multitude of
heterogeneous stencil computations and buffering patterns
with complex dependencies between them. The program is
run in a fully pipeline parallel fashion, where every stencil
operation is performed in parallel in a streaming fashion,
requiring careful buffering on channel connections to avoid

Jacobi 3D Diffusion 2D Diffusion 3D Horizontal Diffusion†
0

200
400
600
800

1000
1200
1400
1600
[GOp/s]

921

1313
1152

145170
373 300

32142
288 183

18

Stratix 10∗ Alveo U250 (No memory) Alveo U250

Fig. 19. Performance of StencilFlow across Intel and Xilinx platforms.
∗From StencilFlow [5] paper. †Preliminary results: not yet validated.

deadlocks. Because the buffering is done at the SDFG-level,
this can be directly compiled for the Xilinx architecture
along with the stencil expansion. The program is applied
on a 128×128×80 grid using 32-bit floating point types.
However, both memory and compute utilization is poor,
pending further investigation into why the U250’s resources
are not sufficiently exploited.

7 RELATED WORK

HeteroCL [24] proposes a programming model based on
a high-level DSL extended from TVM [25], allowing the
user to express programs through a set of computational
primitives, some of which are specialized to specific back-
ends: a stencil backend [23] and a tensor multiplication
backend [26] framework). Optimizations can be done by
the programmer by setting parameters of the employed
patterns, following the approach of Halide [27]. The SDFG-
based method presented here takes a somewhat opposite
approach: rather than exposing existing backends through a
unified DSL, we unify the full optimization flow and code
generation process within a single representation, which can
be targeted and customized by any number of internal or
external frontends and DSLs. The benefit of HeteroCL is
a more “push-button” approach: by constraining the input
to certain patterns supported by the specialized backends,
less intervention is needed by the engineer to achieve fast
programs. In PyLog [28], the programmer writes python
code, with the framework being responsible of applying
optimization passes and generating C++ annotated code
targeting Xilinx devices (through PYNQ [29]). Compared
with both HeteroCL and PyLog, the benefit of SDFGs
and the DaCe framework is malleability: every step of the
design and optimization process is provided as a tool to
the programmer, and every component can be customized,
extended, or even hacked with low-level code. Domain-
specific constructs and transformations exist within the
same space as general constructs and transformations, and
can be applied interchangeably. This consequently yields
out-of-the-box cross-platform compatibility, as any frontend,
DSL, or application based on SDFGs has access to either
backend, even if is desirable to tweak details to a specific
platform.

Spatial [30] is a language for programming spatial
systems through a combination of parallel patterns that
constrain the input, and an abstraction of the underlying
hardware that these patterns can be efficiently mapped to.
The constrained input space is exploited to perform design-
space exploration of the hardware mapping, focusing on



12

automated performance tuning of the design. In contrast,
the DaCe framework focuses on interactive design based
on the data-centric model, which requires more guidance
by the performance engineer, but shares its knowledge
and toolbox between different systems, and is built to be
extensible at every level of the stack.

The multi-level approach taken here is similar to that
of MLIR [15], which introduces multi-level design to com-
piler IR, where progressive lowering allows going from high-
level domain-specific constructs [31], through any number
of intermediate formats, down to traditional compiler IR
such as LLVM. MLIR targets an automated compiler-based
approach, while SDFGs are an interactive format that is
progressively transformed based on the provided complete
view of the program’s data movement.

Kenter et al. [32] propose a macro-based approach to
writing HLS programs that are portable between Xilinx and
Intel OpenCL flows. DaCe lifts cross-compatibility into a full
code generator, allowing a superset of opportunities to emit
highly targeted and structured code for either vendor.

8 CONCLUSION

We proposed leveraging the Stateful DataFlow multiGraphs
(SDFGs) representation as a programming model for spa-
tial computing systems. SDFGs express programs by the
dataflow and control flow, exposing all data movement to
the performance engineer. We showed how the representa-
tion is code generated to efficient architectures for either
FPGA vendor, and how Library Nodes allow embedding
abstract domain-specific behavior into the representation,
allowing SDFGs to be harnessed using a multi-level design
methodology. We showed how programs from linear alge-
bra, machine learning, and stencil domains can be written
using expressive high-level frontends, and optimized with
both domain-specific transformations, and general purpose
transformations reused across domains, then specialized
further to exploit platform features. The multi-level method-
ology promotes the invention of novel transformations and
abstractions that further increase productivity and perfor-
mance not only for the application at hand, but for any
future SDFG amenable to the same optimization strategy.

ACKNOWLEDGEMENTS

This project received funding from
the European Research Council (ERC)
grant PSAP, grant agreement No.
101002047, and the European Union’s
Horizon Europe programme DEEP-

SEA, grant agreement No. 955606. T.B.N. is supported by
the Swiss National Science Foundation (Ambizione Project
#185778). The project was also sponsored by the Paderborn
University, under the DaceML-FPGA project.

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang, “High-level synthesis for FPGAs: From prototyping
to deployment,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 30, no. 4, 2011.

[2] J. de Fine Licht, M. Besta, S. Meierhans, and T. Hoefler, “Trans-
formations of high-level synthesis codes for high-performance
computing,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 32, pp. 1014–1029, May 2021.

[3] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and
T. Hoefler, “Stateful dataflow multigraphs: A data-centric model
for performance portability on heterogeneous architectures,” in
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC’19), 2019.

[4] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham et al., “Trends
in Data Locality Abstractions for HPC Systems,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 28, no. 10, Oct. 2017.

[5] J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer,
and T. Hoefler, “StencilFlow: Mapping large stencil programs to
distributed spatial computing systems,” Proceedings of the 19th
ACM/IEEE International Symposium on Code Generation and Opti-
mization (CGO’21), 2021.

[6] A. N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier,
and T. Hoefler, “A data-centric approach to extreme-scale ab initio
dissipative quantum transport simulations,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2019, pp. 1–13.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
“A practical automatic polyhedral parallelizer and locality op-
timizer,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’08), 2008.

[8] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong, “Au-
toPilot: A platform-based ESL synthesis system,” in High-Level
Synthesis. Springer, 2008, pp. 99–112.

[9] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, and
M. o. Kinsner, “From OpenCL to high-performance hardware on
FPGAs,” in 22nd International Conference on Field Programmable
Logic and Applications (FPL’12). IEEE, 2012, pp. 531–534.

[10] C.-J. Johnsen, T. D. Matteis, T. Ben-Nun, J. de Fine Licht, and
T. Hoefler, “Temporal Vectorization: A Compiler Approach to
Automatic Multi-Pumping,” in 2022 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), Oct. 2022.

[11] Xilinx. QDMA Subsystem for PCI Express v4.0, PG302 (v4.0) July
1, 2020. Accessed: Dec 2022.

[12] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for
hardware design,” arXiv:1910.04436, 2019.

[13] H. T. Kung and C. E. Leiserson, “Systolic arrays for (VLSI),”
Carnegie-Mellon University, Tech. Rep., April 1978.

[14] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible commu-
nication avoiding matrix multiplication on FPGA with high-level
synthesis,” in Proceedings of the 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA’20), 2020.

[15] C. Lattner, J. Pienaar, M. Amini, U. Bondhugula, R. Riddle et al.,
“MLIR: A compiler infrastructure for the end of Moore’s law,”
arXiv:2002.11054, 2020.

[16] S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling et al.,
“An updated set of basic linear algebra subprograms (BLAS),”
ACM Transactions of Mathematical Software, vol. 28, no. 2, pp. 135–
151, June 2002.

[17] A. N. Ziogas, T. Schneider, T. Ben-Nun, A. Calotoiu, T. De Mat-
teis, J. de Fine Licht, L. Lavarini, and T. Hoefler, “Productivity,
portability, performance: Data-centric python,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’21. New York, NY, USA: Association
for Computing Machinery, 2021.

[18] T. De Matteis, J. de Fine Licht, and T. Hoefler, “FBLAS: Streaming
linear algebra kernels on FPGA,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’19), 2019.

[19] O. Rausch, T. Ben-Nun, N. Dryden, A. Ivanov, S. Li, and T. Hoefler,
“DaCeML: A data-centric optimization framework for machine
learning,” in Proceedings of the 36th ACM International Conference
on Supercomputing, ser. ICS ’22, 2022.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan
et al., “PyTorch: An imperative style, high-performance deep learn-
ing library,” in Advances in Neural Information Processing Systems,
vol. 32, 2019, pp. 8026–8037.

[21] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al.,
“Backpropagation applied to handwritten zip code recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[22] K. Chellapilla, S. Puri, and P. Simard, “High Performance Con-
volutional Neural Networks for Document Processing,” in Tenth



13

International Workshop on Frontiers in Handwriting Recognition,
G. Lorette, Ed. Suvisoft, Oct. 2006.

[23] Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA: stencil with optimized
dataflow architecture,” in Proceedings of the 2018 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD’18), 2018.

[24] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu et al., “HeteroCL:
A multi-paradigm programming infrastructure for software-
defined reconfigurable computing,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA’19), 2019, pp. 242–251.

[25] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan et al., “TVM: end-
to-end optimization stack for deep learning,” arXiv:1802.04799,
2018.

[26] J. Cong and J. Wang, “PolySA: polyhedral-based systolic array
auto-compilation,” in Proceedings of the 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD’18), 2018.

[27] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson et al., “Programming
heterogeneous systems from an image processing DSL,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 14,
no. 3, p. 26, 2017.

[28] S. Huang, K. Wu, H. Jeong, C. Wang, D. Chen, and W.-M. Hwu,
“Pylog: An algorithm-centric python-based fpga programming
and synthesis flow,” IEEE Transactions on Computers, vol. 70, no. 12,
pp. 2015–2028, 2021.

[29] “Xilinx PYNQ,” http://www.pynq.io/, accessed: Dec 2022.
[30] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis et al.,

“Spatial: A language and compiler for application accelerators,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18), 2018, pp. 296–311.

[31] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis et al., “Domain-
specific multi-level IR rewriting for GPU,” arXiv:2005.13014, 2020.

[32] T. Kenter, J. Förstner, and C. Plessl, “Flexible FPGA design for
FDTD using OpenCL,” in Proceedings of the 27th International
Conference on Field Programmable Logic and Applications, 2017.

http://www.pynq.io/

	1 Introduction
	2 Representation and Code Generation
	2.1 Code Generating SDFGs
	2.2 Parallelism, Pipelining, and Unrolling with Maps
	2.3 Representing FPGA Kernels
	2.4 Processing Elements
	2.5 Channels/Streams/FIFOs
	2.6 Parametric Processing Elements: Systolic Arrays
	2.7 Memory Hierarchy

	3 Multi-Level Design with Library Nodes
	3.1 High-Level Domain-Specific Frontends
	3.2 Mid-Level FPGA Transformations
	3.2.1 Transforming a Subgraph into an FPGA Kernel
	3.2.2 Memory Access Extraction
	3.2.3 Pipeline Fusion
	3.2.4 Putting it All Together

	3.3 Platform Specialization
	3.3.1 Floating Point Accumulation
	3.3.2 Shift Registers
	3.3.3 Specializing SDFGs vs. Hand-Written Code


	4 Case Study: Linear Algebra
	4.1 AXPYDOT Evaluation
	4.2 GEMVER Optimization and Evaluation

	5 Case Study: Machine Learning
	5.1 ONNX Domain-Specific Frontend
	5.2 Lowering to FPGA
	5.3 Evaluation

	6 Case Study: StencilFlow
	6.1 Stencil Language and Transformations
	6.2 Intel and Xilinx Stencil Specialization
	6.3 Evaluation

	7 Related Work
	8 Conclusion
	References

