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Abstract—Spatial computing devices have been shown to sig-
nificantly accelerate stencil computations, but have so far relied
on unrolling the iterative dimension of a single stencil operation
to increase temporal locality. This work considers the general
case of mapping directed acyclic graphs of heterogeneous stencil
computations to spatial computing systems, assuming large input
programs without an iterative component. StencilFlow maximizes
temporal locality and ensures deadlock freedom in this setting,
providing end-to-end analysis and mapping from a high-level
program description to distributed hardware. We evaluate our
generated architectures on a Stratix 10 FPGA testbed, yielding
1.31 TOp/s and 4.18 TOp/s on single-device and multi-device,
respectively, demonstrating the highest performance recorded
for stencil programs on FPGAs to date. We then leverage the
framework to study a complex stencil program from a production
weather simulation application. Our work enables productively
targeting distributed spatial computing systems with large stencil
programs, and offers insight into architecture characteristics
required for their efficient execution in practice.

I. INTRODUCTION

Spatial architectures such as FPGAs, Intel’s Configurable

Spatial Accelerator [1], Xilinx’ AI Engines [2], and the

Cerebras deep neural network accelerator [3], are characterized

by a large number of small processing units connected by a

configurable network. These systems sacrifice generality and

traditional coherence across hierarchical memory subsystems to

achieve higher transistor efficiency than load/store architectures

(a.k.a. von Neumann architectures), which is essential to

continue scaling in the post-Dennard/Moore era.

Common to spatial architectures is their amenability to

be programmed with dataflow abstractions, as this throws

away notions of implicit accesses to off-chip resources and

communication between parallel processing units, in favor of

explicitly programmable off-chip and on-chip data movement.

In this paradigm, computations are laid out spatially on the

device, rather than existing as a temporal instruction stream,

directly exposing notions of data locality. The simplest example

of this is a pipeline, where each stage synchronously feeds the

next. Systolic arrays add more complexity by extending this

to a sequence of synchronous pipelines that communicate in a

messaging fashion. Generally, directed acyclic graphs (DAGs)

of pipelines allow arbitrary dataflow, where each node can be

attached to multiple producers and consumers.

The temporal locality in iterative or dependent stencil com-

putations is challenging to exploit on load/store architectures,

as they require complex tiling schemes [4] and selective fusion

Fig. 1: Overview of the StencilFlow end-to-end system.

of code segments [5], [6]. In contrast, exploiting this reuse via

dataflow is intuitive, as consecutive stages can be pipelined and

synchronized via their fine-grained dependencies [7]. Implemen-

tations of stencils achieving high performance on reconfigurable

hardware often assume idealized iterative stencils, as this

enables temporal blocking of consecutive timesteps [8], [9],

which maps naturally to pipelined architectures.

In this work, we consider the challenging case of arbitrary

stencil DAGs, motivated by their existence in numerical climate

and weather prediction, where each node is a (potentially

complex) stencil operation reading from one or more input

memories, and writing its output to one or more consumers.

As a motivating case study, we target an application from

the Consortium for Small-scale Modeling (COSMO). The

consortium consists of eight national weather services which

aim to develop, improve and maintain a non-hydrostatic local

area atmospheric model. The COSMO model is used for both

operational [10], [11] and research [12], [13] applications by the

members of the consortium and many universities worldwide.

The stencils used in these simulations are dominated by series

of heterogeneous stencil computations. Unlike the uniform

codes often evaluated in high-performance computing research,

these programs run many different stencil operations on many

different inputs of varying dimensionality, and exhibit complex

dependency patterns between them.

We present a full-stack solution, from a high-level stencil

DSL to low-level spatial program definitions, that are code

generated for hardware execution, summarized in Fig. 1. We

introduce a method that maps stencil programs to spatial

architectures by using dataflow principles to form compositions

that are deadlock free and maximize the number of active

pipelines, based on an analysis of iteration patterns and the

computational source code. Fully code-generated architectures

emitted by StencilFlow evaluated on an FPGA testbed reach

1.32TOp/s and 4.18TOp/s in single-device and multi-device
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experiments, respectively, which to the best of our knowledge is

the highest performance recorded for stencil programs executed

on FPGA hardware to date. The full source code is available

on GitHub1, exposing productive high-level Python interfaces,

while compiling to highly efficient hardware through the code-

generating backend.

Clear separation of concerns at multiple levels of the stack is

a key concept in our approach. An input program is formulated

as a high-level DSL, constraining the program to an analyzable

and optimizable form. Input programs are first optimized on

a domain-specific level, where we can perform specialized

transformations, such as fusing consecutive stencil nodes. Then,

programs are lowered to a dataflow representation represented

in DaCe [14], where we can control and optimize for data

movement. The dataflow representation is then specialized

for the targeted architecture, and finally code-generated to be

compiled and synthesized for hardware.

II. DEFINITION OF A STENCIL PROGRAM

As the input format of StencilFlow, we define a “stencil

program” as a directed acyclic graph of stencil operations on

a structured grid (an example is shown in Fig. 2), where each

node is either a stencil operation performed on the full output

domain or a memory container, and edges are dependencies

between stencils and memories: i.e., outputs produced by one

stencil that are consumed by one or more other stencils, and/or

are read from/written to memory. Each stencil takes one or

more inputs, that are sourced either from off-chip memory, or

fed by a previous stencil evaluation, and produces exactly one

output. To support a broader class of computations present in

weather models considered, we furthermore allow stencils to

read from lower-dimensional inputs: e.g., a 3D stencil can read

from a 2D, 1D, or even “0D” (scalar) arrays using subsets of

its indices. A stencil node is defined by:

• A definition of each logical input that is read, which we

refer to as “fields”, with a corresponding data type, and a

sequence of offsets relative to the center (“field accesses”).

• A code segment describing the computation at each point in

the iteration space, where only the specified input accesses

(including 0D constants) can be used in computations. Since

it is important to know the latency of computations, the code

is restricted to be analyzable (i.e., no external data struc-

tures or external functions, with the exception of standard

math functions). However, ternary functions/conditionals are

allowed, including data-dependent branches.

• A series of boundary conditions, defining how out-of-bounds

accesses should be handled.

Currently supported boundary conditions include: constant,

where out of bounds accesses are replaced with a given constant

value; copy, where out of bounds accesses are placed by the

value at offset 0 in all dimensions (the “center” value); and

shrink, where all computed values that read out of bounds

values are simply ignored in the output. The former two are

specified per input, whereas shrink is specified on the output.

1https://github.com/spcl/stencilflow

To facilitate productive definition of stencil programs, we

define a simple JSON-based input format, which only requires

the minimum amount of information necessary to instantiate

the stencil DAG to be specified explicitly. An example is shown

in Lst. 1. In practice, the definition must additionally provide

data sources for each input field. Stencil programs can have

1, 2, or 3 dimensions, but assume all stencils iterate over the

same iteration space (although they can have variable constant

offsets into the output field).

III. MAPPING TO DISTRIBUTED HARDWARE

There is a substantial body of previous work on mapping

single stencil operations to reconfigurable hardware [8], [7],

[15], [9], where high performance is achieved by chaining

many consecutive timesteps together as a rich source of

temporal locality. Some of this methodology carries over to

the more general scenario we consider here, but we must

additionally consider forks and joins in the stencil program,

inputs and outputs shared by multiple producers and consumers,

heterogeneity and complexity in stencil computations, and

mapping the graph to multiple devices.

A. Mapping to Hardware

For our hardware mapping, we work from the base as-

sumption that every stencil operation in the dependency

graph is mapped to simultaneous dedicated logic (stencil

units/operators), even if this requires the design to span multiple

devices. All stencil operations are scheduled simultaneously,

operating in a fully pipeline parallel manner. In this scenario,

production and consumption rates are identical across the

dataflow graph, allowing the runtime to be modeled as a single,

deep pipeline (described in Sec. VIII-A).

Each stencil unit executes a pipeline, which processing a

number of cells equal to the product of the input dimensions,

where logic required to handle out-of-bound accesses is

predicated into the pipeline. The next cell is evaluated as

soon as all inputs required for that cell are ready. This way,

all dependencies between stencils become fine-grained on a

per-cell level. This spatial computing view is distinct from

the load/store view, as we default to perfect data reuse (i.e.,

we exploit all available temporal locality). In contrast, the

efficiency of computations on load/store architectures relies on

{ "inputs": {"a0": {"dtype": "float32",

"dims": ["i","j","k"]},

"a1": {"dtype": "float32",

"dims": ["i","j","k"]},

"a2": {"dtype": "float32",

"dims": ["i","k"]} },

"outputs": ["b4"], "shape": [32, 32, 32],

"program": {

"b0": {"code": "a0[i,j,k] + a1[i,j,k]",

"boundary_condition": {

"a0": {"type": "constant",

"value": 1},

"a1": {"type": "copy"} } },

"b1": {"code": "0.5*(b0[i,j,k] + a2[i,k])",

"boundary_condition": "shrink"},

"b2": {"code": "0.5*(b0[i,j,k] - a2[i,k])",

"boundary_condition": "shrink"},

"b3": {"code": "b1[i-1,j,k] + b1[i+1,j k]",

"boundary_condition": "shrink"},

"b4": {"code": "b2[i,j,k] + b3[i,j,k]",

"boundary_condition": "shrink"} } }

Lst. 1: Program description.

Fig. 2: Corresponding DAG.

Fig. 3: Hardware mapping.
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maintaining a task granularity suitable for the architecture (large

number of identical threads on GPU, small number of large

tasks on CPU). Kernel fusion is thus a critical optimization to

achieve the right task granularity [6] for performance through

spatial locality, whereas StencilFlow programs are executed in a

fully “fused” schedule, but are instead concerned with satisfying

the off-chip and on-chip memory constraints (fusing stencil

operators takes a different meaning, described in Sec. V-B).

Inputs are provided to each stencil unit through on-chip

channels with a compile-time fixed size, where the producer

can either be another stencil unit (i.e., a dependency), or a

memory unit reading directly from off-chip memory. If one or

more inputs are not ready, the pipeline must stall while waiting

for the remaining inputs to arrive. For any DAG that is not a

multi-tree, this can result in deadlocks if channel capacities

are insufficient to buffer inputs ready early until inputs ready

later arrive, due to the circular dependency implied by each

data exchange requiring the receiver and sender to not be full

and not be empty, respectively. We must thus take all paths

through the DAG into account when deciding the size of buffers

between dependencies.

In the example shown in Fig. 4, the stencil unit computing C

requires data from both stencil units A and B to begin streaming.

The results streamed out of A are also required by B. On the

left hand side, C is waiting for data from B (i.e., for the data

stream to not be empty), B is waiting for additional data from

A, and A is waiting for C to accept the data (i.e., for the data

stream to not be full), thus forming a circular dependency.

Without additional buffering, this results in a deadlock. By

adding an appropriate buffer between A and C (right hand side),

we can inject sufficient credits to tolerate the delay induced by

the path through B. We describe how StencilFlow computes

the buffer depths required to prevent deadlocks and ensure

continuous streaming operation in Sec. IV-B.

Fig. 4: Preventing deadlocks by injecting buffers.

B. Mapping to the Distributed Setting

To scale beyond the off-chip memory bandwidth, on-chip

memory capacity, and logic resources available on a single chip,

we let designs scale to multiple devices. For modeling and code

generation, this means that certain inter-stencil connections

Fig. 5: Stencil program spanning two devices.

will cross devices, and thus imply communication across the

network. Furthermore, data located in off-chip memory must

be present on any device that accesses it, implying potential

replication to multiple devices that require it. In the example

shown in Fig. 5, a2 is accessed by stencils on either device,

requiring it to exist in both DRAM memories.

To implement inter-node communication in practice, we

leverage the Streaming Message Interface [16] (SMI), which

exposes communication as channels with FIFO semantics,

resulting in inter-node communication being nearly identical to

intra-device communication between stencils in the generated

code. With the target in mind, the following will describe

the program analysis, and the central components of the

StencilFlow stack, required to build these spatial architectures.

IV. FROM DAG TO DATAFLOW

The StencilFlow framework analyses the stencil DAG, and

uses this to construct a dataflow graph that maps to efficient

hardware. Data reuse happens both internally in each stencil,

facilitated by “internal buffers”, and on the edges between

stencil nodes, referred to as “delay buffers”.

A. Internal Buffers for Intra-Stencil Reuse

The most straightforward source of temporal locality comes

from within each stencil operation, where the same input field

is often accessed at multiple offsets relative to the center,

illustrated in Fig. 6 for accesses {[−1, 0], [0,−1], [0, 1], [1, 0]}
in a 2D iteration space. Furthermore, in the global dataflow

setting, the core assumption of StencilFlow is that data should

only be loaded once, streaming directly between kernels without

going through off-chip memory.

A stencil node has 0 or 1 internal buffers per field accessed,

depending on whether there are multiple accesses to the given

field within the stencil. The size of each buffer is determined by

the largest distance between any two offsets in memory order,

plus one (or plus the vector width, in the case of vectorized

Fig. 6: Internal data reuse buffer. Fig. 7: Varying buffer shapes.
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kernels) in the stencil iteration space: e.g., in a 3D iteration

space of shape {K,J, I}, two accesses a[0, 1, 0] and a[0,

-1, 0] require buffering two 1D rows (2I+W elements, where

W is the vector width), while two accesses b[0, 0, 0] and

b[1, 0, 0] require buffering a 2D slice (2IJ +W ), shown

in Fig. 7 top and bottom, respectively. In general, buffers sizes

can be up to a constant number of (D− 1)-dimensional slices

for a D-dimensional stencil.

StencilFlow computes the internal buffer size for each field,

for each stencil, independently. However, the schedule for

when the pipeline starts writing each buffer is dependent

on the other fields accessed. For example, if a stencil reads

multiple fields with internal buffer sizes {B1, . . . , BF }, each

internal buffer can be only start to be filled after the first

Bi −max{B1, . . . , BF } iterations (the largest buffer(s) will

always start reading immediately), so it is synchronized with

the other fields. Additional accesses in between the “highest”

and “lowest” offset in memory order do not affect the total

buffer size, although they can affect the buffer implementation

in practice by adding more parallel accesses into the buffer.

Filling the internal buffers also affects the latency, and

transitively the runtime, of the stencil program. A stencil node

cannot begin computations before all operands are available,

which only happens once all internal buffers have been filled. As

the size of buffers is exactly the distance between the lowest and

highest accessed index in order of the stencil iteration space, the

initialization phase of a stencil is given by max{B1, . . . , BF },

which is crucial to the delay buffer calculation described in

the following.

B. Delay Buffers for Inter-Stencil Reuse

Edges between stencils in the DAG enable data reuse by

replacing expensive round-trips to off-chip memory with direct

dataflow. Furthermore, if multiple stencils require data from the

same input field, it is sufficient to read it from memory once,

and stream the data to all stencils requiring it. StencilFlow

exploits all such opportunities, while preventing the deadlock

scenario illustrated in Fig. 4. This requires synchronizing inputs

to consumers by adding buffers that delay the data (i.e., inject

sufficient credits) until all inputs are ready without blocking

the producer(s). We annotate these delay buffers on edges in

the dataflow graph, corresponding to FIFO channel depths.

There are two factors that determine delays in the DAG.

First, the AST formed by computation of a stencil operation

Fig. 8: Delay buffers on edges enable reuse and deadlock freedom.

forms another DAG, whose critical path adds a delay between a

sequence of inputs entering and exiting the pipeline. Computing

the critical path requires latency information for each operation

performed, which is both type and architecture dependent.

As a result, these latencies can be provided as configuration

to the framework, and default to conservative values to

account for the worst case scenario. We note that these delays

are typically small (<100 cycles), and do not contribute

significantly to the overall fast memory usage, even when

conservatively overestimated. More importantly, delays occur

in the initialization phases within each stencil, where internal

buffers are being filled before enough data is available to start

computations. Each stencil node in the stencil program will

contribute max{B1, . . . , BF } elements to this delay, where

{B1, . . . , BF } is the set of F internal buffer sizes for the

given stencil.

To determine the size of delay buffers on the edges arriving

at a given node, we traverse the DAG backwards from the node,

computing the latency contributions along all possible paths,

from all possible source nodes, and for each edge, including

the contribution of the initialization phase of the node itself,

recording the highest delay encountered per edge. The buffer

size on each edge is then the highest delay found for that

edge, subtracted from the highest delay found across all edges

(it follows that each node will have at least one incoming

edge with delay size zero). Similar to internal buffers, the

maximum size of delay buffers is proportional to the size of a

(D − 1)-dimensional slice of the iteration space. An example

of annotated delay buffers in shown in Fig. 8.

C. Vectorization

When insufficient reuse is present in a target program, we

can employ vectorization to increase parallelism and memory

bandwidth utilization, in order to approach a compute logic or

memory bandwidth bound. To this end, we allow StencilFlow

input programs to specify a vectorization factor, which will

not only affect the generated hardware, but also the dataflow

analysis. Vectorizing by a factor of W reduces the number

of iterations in the inner loop of all stencils in the program

by a factor of W , which affects the size of initialization

phases, and transitively the delay buffers in the system. In

addition to directly increasing the bandwidth requirement and

parallelism in the program, vectorization can also have the

subtler effect of coarsening stencil nodes, increasing the ratio

of “useful” compute logic to overhead logic. We can thus also

use vectorization in time tiling-like scenarios to coarsen simple

stencils and increase the achievable performance.

Once the stencil program has been enriched with the appropriate

internal buffer and delay buffer sizes, the resulting graph is

emitted to the data-centric backend for domain-specific and

low-level optimizations.

V. DATA-CENTRIC ABSTRACT REPRESENTATION

We use the Data-Centric (DaCe) [14] framework as a

dataflow representation and backend for the hardware mapping.
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Fig. 9: Data-centric representation (SDFG) of a Laplace stencil.

DaCe defines a graph-based development workflow that main-

tains a separation of concerns between domain scientists and

performance engineers, based on the observation that the vast

majority of hardware optimizations are centered around data

movement reduction. DaCe generates high-performance code

for both load/store architectures and reconfigurable hardware,

and supports high-level synthesis (HLS) backends for both

Xilinx and Intel FPGA architectures.

DaCe separates program definition from its optimization by

using the the Stateful DataFlow multiGraph (SDFG) represen-

tation. In each multigraph, data movement (edges) is explicitly

separated from data/FIFO containers and computations (nodes).

These acyclic multigraphs are, in turn, nested within state

machines (directed graphs) that represent the control flow of

the application. An example of a two-dimensional Laplace

operator is shown in Fig. 9.

In the DaCe workflow, a program is developed in a

frontend language (e.g., Python, StencilFlow) by a domain

scientist. All subsequent hardware mapping and optimizations

are performed on the SDFG separately, by a performance

engineer. Optimization and hardware mapping is achieved

via graph rewriting rules, called transformations, for data

movement reshaping, scheduling parallel subgraph scopes to

processors, and modifying data storage/layout. Transformations

are user-extensible and written in Python interfaces, allowing

both domain-specific and general purpose optimizations, and

enabling knowledge transfer between applications. Adaptations

to the graph are saved separately from the source code, allowing

the original source code to be modified without changing the

optimization scheme.

A. Extensions to DaCe

To support this work, we extend the DaCe framework,

introducing a new type of dataflow node, pipelined scopes,

and three new transformations. In particular, we extend the

SDFG with the concept of library nodes. Library nodes

function similarly to computational nodes, but encode domain-

specific information and contain multiple implementation

targets, which translate into different subgraphs upon expansion.

The StencilFlow-specific library node Stencil was developed

for this work, and will be used extensively throughout the

following. Since the high-level semantics of library node

types are known, they allow performance engineers to develop

domain-specific transformations, such as algebraic contractions

(e.g., double transposition) and others. With library node

expansions potentially containing other library nodes, multi-

level coarsening and transformations are thus enabled in SDFGs,

inspired by the MLIR [17] stack.

As a useful shorthand for pipelined iteration spaces, we

introduce the pipeline scope, augmented with information

on initialization and draining phases, to easily allow the

programmer to inject specialized behavior during initialization,

streaming, and draining phases. For StencilFlow, this allows

encoding the internal buffer initialization phase, and draining

phases where results are still being computed only using data

present in local buffers, thus omitting reads from inputs.

With the domain-specific concepts enabled by library nodes,

we are now able to develop transformations for stencil programs

on reconfigurable hardware. We develop both domain-specific

and a general-purpose transformation, summarized in Fig. 10.

NestDim reschedules stencil computations by taking multi-

ple, parametrically-parallel stencils and creating one stencil,

which can be mapped into different schedules on hardware.

StencilFusion schedules multiple dependent stencils as one

stencil with multiple statements, differing from standard map

fusion by taking boundary conditions and redundancy into

account. For general-purpose transformations, we add the

MapFission transformation, which splits a parallel subgraph

into multiple parallel subgraphs (which can in turn be resched-

uled), introducing temporary storage between the subgraph

components. The NestDim and MapFission transformations

are used as a tool to extract stencil programs from existing

SDFGs to analyze them in StencilFlow, while StencilFusion

is an optimization for both load/store and spatial architectures,

described in the context of StencilFlow below.

B. Spatial Stencil Fusion

On load/store architectures, fusing consecutive stencils is

used to increase performance by improving data locality,

reducing write/read roundtrips from off-chip memory, and

reducing context scheduling overhead [18]. When applying the

transformation on StencilFlow dataflow graphs, the effect is

somewhat different, as the schedule of the spatial architecture

is already fully “fused” into a global pipeline. Instead, fusing

stencils has the following effects:

Fig. 10: Transformations used.
(DS: Domain-Specific, GP: General-Purpose).
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(a) Load/store stencil fusion. (b) Stencil fusion in StencilFlow.

Fig. 11: Unlike load/store fusion, spatial fusion only reduces latency.

• The critical path through the program can be reduced by

combining the initialization phases (see Sec. IV-A) of two

consecutive stencils.

• Internal buffers for the same input field are combined into a

single internal buffer.

• Multiple smaller delay buffers can be combined into fewer,

larger buffers, which affects hardware utilization, depending

on the granularity of on-chip memory on the target platform.

• Combined code sections increase the opportunity for common

subexpression elimination by the optimizing compiler.

• Coarser stencil nodes increase the ratio of “useful” logic to

the number of pipelines instantiated, which can affect spatial

resource overhead.

The difference between fusing tasks on load/store architectures

and the spatial fusion performed here is illustrated in Fig. 11.

On load/store architectures (Fig. 11a), the total number of

scheduled kernels is reduced when fusing task 0 and task 2 into

a single kernel. In Fig. 11b, all operators are already scheduled

in parallel, but the initialization latency can be reduced if the

fused nodes sA and sB are on the critical path.

In our dataflow canonicalization pass, we define a collection

of heuristics for fusing two stencils so that these effects

are observed. Firstly, the necessary conditions for fusion are

checked, namely that the two stencils operate on the same data

shape (correlating to iteration space) and that they have the

same StencilFlow boundary condition definitions. Then, we

only consider stencils that are connected by one data container

node u with deg(u)=2, in order to ensure that all stencils

(fused or otherwise) have a single output. Finally, we ensure

no other instances of u exist in other states, so that it can be

completely removed from the graph without adding an extra

write to off-chip memory.

For the experiments in this work, we perform aggressive

stencil fusion of input programs, as this is observed to reduce

overall logic through the coarsening of stencil nodes, and

slightly reduces runtime by pruning initialization latencies.

VI. CODE GENERATION

StencilFlow relies on DaCe backends to generate the final

kernel code, which is passed to an optimizing compiler. For

the experiments performed in this work, we target the Intel

FPGA SDK for OpenCL backend [19], which is a high-level

synthesis (HLS) compiler, emitting RTL code from annotated

OpenCL. Being an HPC-oriented framework, DaCe automati-

cally performs necessary annotations for pipelining, unrolling,

and coalescing loops emitted from parametric maps in the

dataflow graph, splits parallel sections into processing elements

(i.e., OpenCL kernels), annotates buffer depth properties for

channels, declares kernels as autorun when possible, inlines

constants, and performs conversions between vectorized and

non-vectorized data types. Host code necessary to interface with

the kernel and the necessary memory copies are generated, and

the final program can be called by using the high-level Python

interface. By using DaCe for code generation and by using the

library node abstraction for stencil computations, supporting

Xilinx FPGAs, emitting RTL code directly, or targeting other

spatial systems entirely will only require adapting the stencil

library node expansion, provided that support for the desired

architecture is present in/added to the DaCe framework.

A. Intel FPGA Optimizations in DaCe

When targeting the Intel HLS compiler, delay buffers are

represented as DaCe streams with a given buffer size, which are

mapped to the Intel OpenCL channel abstraction, that in turn

are mapped to FIFOs in hardware. We target the shift register

pattern in Intel’s OpenCL compiler to efficiently implement

internal buffers within each stencil node. To achieve this in

DaCe, a data container spanning the full width of each internal

buffer is created, injecting and shifting elements every cycle.

“Tap” points (constant offset accesses) into the array are then

connected to the stencil, where offsets are generated from the

distance between accesses flattened into a 1D iteration space.

The processing done per cell in an expanded stencil library

node is shown in Fig. 12. The graph contains three consecutive

components: a shift phase, containing a fully unrolled map

scope (trapezoids) where a “tasklet” (octagon) shifts each entry

of the shift register memory (ovals) by the vectorization width

to i+W ; an update phase, where new values are read from

the input channel (dashed border) into the front of each shift

register by a tasklet; and a compute phase, where the buffers

are accessed at all tap points and fed to the main computation

tasklet, which is parametrically unrolled to treat each element

in the vector with potentially different boundary conditions,

and passes through another tasklet that conditionally writes the

output stream if the stencil is not in the initialization phase.

This full graph will be wrapped in a parametric scope that

defines the iteration space of the stencil program, which is fully

pipelined, such that all three phases are executed in a pipeline

parallel manner. The input and output streams (dashed borders)

are connected to the appropriate producers and consumers in

Fig. 12: Data movement occuring per iteration of a stencil.
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the global dataflow graph. Source nodes are instantiated as

dedicated prefetchers that can read ahead of computations, and

dedicated writers are instantiated at sink nodes that can buffer

data while waiting for DRAM writes.

B. Generating Distributed Programs

To code-generate distributed implementations, we integrate

an OpenCL implementation of the Streaming Message Inter-

face [16] into the DaCe backend. SMI extends HLS with a

distributed memory programming model for reconfigurable

hardware that unifies message passing with pipelined stream-

based communication of data, such that cross-chip communi-

cation is expressed the same way as on-chip communication.

When a stencil program spans multiple devices, the compu-

tation running on each device is represented by a separate

DaCe program, as it will compile to separate bitstreams

that must be configured to each device in the sequence.

Devices communicate via remote streams, which are DaCe

streams annotated with having a source/destination located

on a different device, which will trigger the SMI backend to

code generate the relevant networking code and emit streaming

message communication.

If multiple network connections are present between two

endpoints, SMI can split a communication stream into two

or more substreams following different channels across the

network, and recombine them at the other end, allowing for a

multiplicative increase in achievable bandwidth. In StencilFlow,

we exploit this to increase the vectorization width and number

of channels spanning across devices.

C. Reference Code

Using domain-specific stencil nodes within the DaCe frame-

work, we are able to maintain a high-level view of the program,

which enables optimization for different architectures. While

exploring CPU and GPU performance is out of the scope

of this work, we exploit this capability to generate reference

CPU-executed graphs where stencil evaluations are executed

sequentially in topological order (i.e, no fusion or parallelism

between stencil evaluations), which we can verify against the

generated hardware kernels.

VII. WORKFLOW AND ARTIFACTS

To summarize the stack described throughout the above, an

overview of the StencilFlow workflow is shown in Fig. 13.

The StencilFlow framework is a pure Python code (≈5,300
SLOC at the time of writing) developed for the purpose of

this work. The DaCe framework was extended with Python

and C++ features to support domain-specific nodes.

The input program to StencilFlow can either be given as

the JSON-based program description described in Sec. II, or

as a DaCe dataflow graph containing domain-specific stencil

nodes. In the latter case, we developed software that performs

canonicalization passes to the DaCe graph, before extracting

the stencil pattern to the standard program description format.

This allows us to read in external programs, which will be

required for the case study in Sec. IX.

Fig. 13: Workflow overview, with code artifacts annotated on arrows.
Dashed outline indicates an existing feature that was extended.

StencilFlow can directly run the stencil program from the

input description, transparently executing parsing, dependency

analysis, buffering analysis, SDFG generation, domain-specific

optimization, library node expansion, general purpose optimiza-

tion, code generation, compilation of the host code, compilation

of the kernel (requiring the full synthesis, placement and routing

flow if FPGAs are targeted), execution of the program, and

validation of results.

VIII. BENCHMARKS

We benchmark the architectures emitted by StencilFlow to

establish the highest achievable performance and bandwidth

on a testbed platform, which we can use to analyze the charac-

teristics required to push performance of stencil applications.

A. Computing Expected Runtime

We annotate benchmarks with the “expected” runtime, given

by the lower bound on number of cycles required to evaluate the

program, assuming all data is available at the earliest possible

cycle. Because the full stencil DAG is executed in a pipeline

parallel manner, we can model the runtime as a single, global

pipeline. It is generally true for a pipelined circuit that the

number of cycles required to process N inputs is

C = L+ I ·N , (1)

where L is the latency of the pipeline, and I is the initiation

interval (i.e., the number of cycles between allowing a new

set of inputs to the circuit) [20]. All architectures emitted by

StencilFlow are fully pipelined, so we fix I=1 cycles
operand

. N is

the product of the domain dimensions (number of iterations

in the iteration space), divided by the vectorization width W
when applicable. L is computed from the circuit latency and

initialization delay described in Sec. IV-B. N and L compose

differently: N covers the streaming section where stencils

can operate in a pipeline parallel fashion, whereas L covers

the initialization phase where stencil units are not feeding

downstream consumers. The depth of the DAG thus adversely

affects the performance upper bound, while the size of the

domain affects it favorably, increasing the relatively number of

“useful” cycles to cycles spent in initialization. Since L is only

proportional to D−1 or fewer dimensions (see Sec. IV-B),

it becomes negligible when the domain is large relative to

321



the depth of the stencil DAG. However, we include it when

computing expected runtime for completeness.

B. Experimental Platform

To evaluate the efficiency of dataflow architectures laid out by

StencilFlow, we map them to a state-of-the-art FPGA platform.

We target the BittWare 520N PCI-e attached board, with an Intel

GX 2800 Stratix 10 processor, 4 DDR4 memory banks with

a combined peak bandwidth of 76.8GB/s, and four network-

attached QSFP ports rated at 40Gbit/s. The annotated OpenCL

code generated from DaCe is compiled with version 19.1.0 of

the Intel FPGA OpenCL SDK and Quartus compiler, targeting

the p520 max sg280l shell offered by BittWare. This shell

supports networking via OpenCL channels, which we target

using the SMI library (Sec. VI-B). The FPGAs are installed

in the Noctua cluster at the Paderborn Center for Parallel

Computing, which exposes a programmable, fully connected

optical switch, allowing us to chain FPGAs together in a

sequence with two 40Gbit/s links between each consecutive

device to explore multi-device scaling. Our benchmarks focus

on 32-bit precision, as this is used in production by our

motivating weather simulation example, and because this

precision is supported natively on the Stratix 10. However, all

parts of the StencilFlow stack support any data type recognized

by the underlying compiler, including double precision floating

point and integer types.

C. Iterative Stencil Performance

StencilFlow is built to handle complex stencil kernels, but

is also capable of processing traditional, iterative-style stencil

codes. We produce benchmarks using such kernels to establish

the highest floating point performance reachable by StencilFlow,

which can be compared to previous work. This is achieved by

chaining together long linear sequences of stencils executed on

a large input domain, analogous to time-tiled iterative stencils.

128 256 384 512 640 768 896 ... 1792 3584 7168
FP32 operations [Op/cycle]

0

512

1024

1536

2048

Perf. [GOp/s]

40 79 118 153 198 232 264
388

2
FPGAs

771

4
FPGAs

1537

8
FPGAs

Single node

Multi-node

FP32, 8 Op/Stencil, 215×32×32 domain.

Fig. 14: Performance scaling for single and multi-node.
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Fig. 15: Performance scaling with 4-way vectorization.

To evaluate scaling behavior of an iterative stencil, we gradually

increase the number of chained stencil computations until a

single FPGA device is fully utilized, then we continue the

chain across multiple devices by replacing accesses to on-chip

FIFOs with network channels. We repeat the experiment with

and without vectorization, to see the effect of coarsening stencil

stages. The resulting benchmarks are shown in Fig. 14 and

Fig. 15 without and with vectorization, respectively.

Without vectorization, the highest performing bitstream

yields 264GOp/s on a single device, and scales up to

1.5TOp/s across 8 FPGAs. A 4-way vectorized code reaches

568.2GOp/s and 4.2TOp/s on single and multi-device,

respectively. Vectorization thus proves to be crucial to achieve

high utilization of compute resources on the Stratix 10, as it

reduces the ratio of overhead logic to computational logic.

This further motivates the necessity of the stencil fusion

transformation (Sec. V-B) on input programs to coarsen the

granularity of stencil nodes. Frequencies across all benchmarks

are consistently in the range 292-317MHz, which is factored

into the upper bound calculation shown as dashed black lines,

computed from Eq. 1 as C/f , where f is the design frequency.

We additionally measure the highest performance achievable

without networking on a single device, as we are unable to

vectorize the stencils in the distributed experiment further

due to the network bandwidth bottlenecking the computation,

included in Tab. I. As a non-relative measure of device

utilization, the table includes resource usage for the maximum

performing stencil for each data type. The highest measured

stencil performance of 1.3TOp/s and 4.2TOp/s marks a

9.4× and 30× speedup over the stencil performance reported

for a single VCU1525 device in the original work on DaCe

for single-device and multi-device, respectively (which in turn

outperformed a state-of-the-art HLS compiler by five orders

of magnitude, showing in inability of HLS compilers to yield

satisfactory out-of-the-box performance).

TABLE I
HIGHEST PERFORMING KERNELS AND THEIR RESOURCE USAGE.

Performance ALM FF M20K DSP

Total 103 M 3.7 M 11.7 K 5760
Avail. 692 K 2.8 M 8.9 K 4468

Jacobi 3D
265GOp/s

233 K 534 K 1495 784
(Ours) 33.6% 19.3% 16.7% 17.6%

Jacobi 3D
921GOp/s

437 K 1207 K 2285 3072
W=8 (Ours) 63.1% 43.6% 25.5% 68.8%

Diffusion 2D
1,313GOp/s

449 K 1329 K 2565 2304
W=8 (Ours) 64.8% 48.0% 28.6% 51.6%

Diffusion 3D
1,152GOp/s

567 K 1606 K 5357 3072
W=8 (Ours) 81.9% 57.9% 59.8% 68.8%

Diffusion 2D
913GOp/s

471.4 K 1173.6 K 2204 3844
(Zohouri et. al. [8]) 68.0% 42.3% 24.6% 86.0%

Diffusion 3D
934GOp/s

450.5 K 1078.2 K 8684 3592
(Zohouri et. al. [8]) 65.0% 38.9% 97.0% 80.4%

Waidyasooriya
630GOp/s Arria 10 GX 1150

and Hariyama [21]

SODA [9] 135GOp/s ADM-PCIE-KU3

Niu et al. [22] 119GOp/s Virtex-6 SX475T

Ben-Nun et al. [14] 139GOp/s Virtex UltraScale+ VCU1525
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For a more direct comparison on the Stratix 10 platform, we

compare StencilFlow to a handwritten stencil implementation.

Zohouri et al. [8] combine spatial and temporal blocking in

an HLS-based design to achieve high performance on stencil

codes on an Arria 10 FPGA. We extend the authors’ work

by building their code2 for Stratix 10, using the Diffusion

2D and 3D stencil codes. On advice from the authors, we

configure parameters to a vectorization width of 16, run

enough repetitions that the kernel runs for multiple seconds

to hide initialization overhead, and disable burst interleaving.

We include the resulting performance in Tab. I, along with

other previous results by Niu et al. [22] and Waidyasooriya

and Hariyama [21], showing that StencilFlow is competitive

even with hand-tuned code. We also consider frameworks

emitting stencil FPGA code, including the Jacobi 3D result of

SODA [9], which is the stencil backend of HeteroHalide [23]

and HeteroCL [24]. For previous work we note the FPGA used

for evaluation by the respective authors. We do not compare

quantitatively to HeteroCL and Wang and Liang [25], as the

authors do not report absolute performance numbers.

D. Off-Chip Memory Bandwidth

To measure achievable off-chip memory bandwidth by

StencilFlow programs, we run two series of benchmarks: first,

we measure the effective bandwidth utilization when scaling up

number of accesses, but accessing only 32-bits per cycle at each

access point. This stresses the routing on the device to deliver

data to all end-points every cycle. Second, we request the

same total number of 32-bit operands, but at fewer, vectorized

endpoints, requiring more operands per cycle per endpoint. We

found the -global-ring and -duplicate-ring options to

the Intel FPGA OpenCL compiler to significantly increase the

number of parallel access points supported in the architecture

before designs dropped in frequency. The resulting benchmarks,

along with the analytically computed performance upper bound,

are shown in Fig. 16. For the non-vectorized green bars, the

x-axis corresponds to the number of access points, while the

number of access points for the vectorized orange bars is the

number of operands divided by the vector size of 4 (i.e., up to

12 access points are depicted).

After 24 parallel access points, we see a decrease in

effective memory performance relative to peak, flattening out
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Fig. 16: Effective bandwidth with number of operands requested per
cycle (i.e., number of operands served if infinite bandwidth).

2https://github.com/zohourih/Diffusion FPGA, commit 96588e2.

at 36.4GB/s, which is 36.4/76.8 = 47% of peak bandwidth.

This marks the limit of the memory controller crossbar, and of

routing a large number of memory accesses across the device.

The 4-way vectorized scenario allows for higher achievable

bandwidth, but experiences a drop in efficiency at a lower

number of access points (0.94× at 12 access points), and

flattens out at 58.3GB/s, which is 76% of peak bandwidth.

No further increase was seen with more access points, and

8-way vectorized programs achieve similar bandwidth.

IX. WEATHER SIMULATION APPLICATION STUDY

To stress the full capability of the StencilFlow stack we

evaluate the horizontal diffusion stencil program, a large real-

life weather simulation kernel from the COSMO weather model.

Horizontal diffusion is a 4th order explicit method performed

on a staggered latitude-longitude grid with Smagorinsky

diffusion to smoothen wind velocity components [26]. We

obtain the program from an input SDFGs using stencil library

nodes, shown for horizontal diffusion in Fig. 17a, applying

the NestDim and MapFission transformations described in

Sec. V-A, resulting in an SDFG as the one shown in Fig. 17b,

from which the stencil program is extracted. The DAG in

Fig. 17c is created after aggressively fusing consecutive stencils

(see Sec. V-B). In the fully fused program, initialization latency

(L in Eq. 1) accounts for ∼0.7% of the total number of

iterations required to evaluate the program, and is thus a

negligible overhead. This program is run in production by

the Swiss Federal Office of Meteorology and Climatology

(MeteoSwiss), where simulations are performed with 32-bit

floating point on an NVIDIA Pascal Tesla K80 cluster. We

compare StencilFlow to the stronger TSMC 16 nm Tesla P100

GPU on the same architecture (comparable release window to

the Stratix 10), a TSMC 12 nm Tesla V100 Volta GPU, and a

12-core Xeon CPU.

A. Horizontal Diffusion Analysis

The horizontal diffusion DAG characterized by a high

number of stencils reading the same input locations (28 accesses

of 10 unique fields), allowing for the communication volume

between them to be consolidated via delay buffers, as well

as complex dependencies between stencil nodes (each non-

source stencil receives data from 2−6 other stencil nodes).

This requires the full complexity of an arbitrary DAG, and

allows us to stress the full stack of StencilFlow.

Floating point operations in the DAG include 87 additions, 41

multiplications, and 2 square roots, in addition to 2 minimum

and 2 maximum operations, and ternary operations resulting

in 20 data-dependent branches. With maximum reuse of all

input fields and all computed fields (i.e., perfect locality), the

program reads 5IJK+5I operands and writes 4IJK operands,

for a total of 9IJK + 5I operands. Considering floating point

arithmetic only, this implies a upper bound arithmetic intensity

of (square root is counted as one operation):

(87 + 41 + 2)IJK [Ops]

9IJK + 5I [operands]
≈

130

9

[
Ops

operand

]
,
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(a) Input program as SDFG.

(b) Canonicalized SDFG. (c) DAG of the transformed program inferred by StencilFlow.

Fig. 17: Horizontal diffusion stencil program from the COSMO weather and climate model.

which for 32-bit floating point corresponds to

130/9 [Ops/operand]

4 [B/operand]
=

65

18

[
Ops

B

]
. (2)

Using the benchmark of practically achievable bandwidth

presented in Sec. VIII-D for the Stratix 10 FPGA, the highest

achievable performance in roofline model [27] terms is:

65

18
[Ops/B] · 58.3 [GB/s] = 210.5 [GOp/s] , (3)

or 277.3GOp/s at the peak data sheet bandwidth of 76.8GB/s.
This is well below what is achievable by a stencil program

with higher arithmetic intensity (see Sec. VIII-C), indicating

that high bandwidth is required to shine in realistic stencil

applications. We compute the bandwidth required to saturate

the compute performance measured in Sec. VIII-C for the

arithmetic intensity of the studied program to be:

917.1 [GOp/s]

65/18 [Op/B]
= 254.0 [GB/s] . (4)

The ideal logic to bandwidth ratio is thus off from the ideal

ratio by a factor of ∼3−4 on the target Stratix 10 platform.

To explore the performance potential of the Stratix 10 without

this memory bottleneck, we will include experiments with

simulated “infinite” memory bandwidth, by replacing memory

accesses with compile-time constants fed to the computational

circuit (and omitting validation of functional correctness).

B. Horizontal Diffusion Benchmark

We compile the DAG in Fig. 17c for the Stratix 10 from

the constructed dataflow graph by StencilFlow. As shown

in the analysis above, the program is bandwidth-bound on

this platform, which requires us to saturate the bandwidth to

maximize performance. Without vectorization, the pipelined

circuit requires approximately 9 operands/cycle, correspond-

ing to 10.8GB/s at 300MHz for single precision floating

point. We thus vectorize the program by a factor of 8 for a

maximum bandwidth of 86.4GOp/s, in addition to building

a 16-way vectorized kernel with simulated input memory

to evaluate performance without the memory bottleneck.

We target a 128×128×80 domain size, which is used for

performance benchmarking by MeteoSwiss. Specifically, a

128×128 horizontal domain is stacked in 80 vertical layers.

In addition to runtime and the effective performance, we

consider peak memory bandwidth and the associated fraction

of highest achievable performance for the given arithmetic

intensity computed according to Eq. 2 (%Roof.). The results

are listed in Tab. II.

TABLE II
HORIZONTAL DIFFUSION BENCHMARKS.

Runtime Performance Peak BW. %Roof.

Stratix 10 1,178 μs 145GOp/s 77GB/s 52%
Stratix 10∗ 332 μs 513GOp/s ∞GB/s −
Xeon 12C 5,270 μs 32GOp/s 68GB/s 13%
P100 810 μs 210GOp/s 732GB/s 8%
V100 201 μs 849GOp/s 900GB/s 26%

∗Without memory bandwidth constraints.

We include CPU and GPU performance as a point of

comparison, using a 12-core Intel Xeon 2.60/3.50GHz E5-

2690V3 CPU, and NVIDIA Tesla P100 and V100 GPUs,

compiled with CUDA v10.1 and gcc 8.3.0. The application is

synthesized using the MeteoSwiss Dawn [28] stencil-optimizing

compiler toolchain3, which was also used to generate the

StencilFlow input program. Dawn is specifically designed to

optimize weather and climate stencil programs for GPU and

CPU, employing data movement optimizations, GPU kernel

fusion, CPU multi-threading, vectorization, and efficient GPU

boundary scheduling. The domain size of 128×128×80 is

sufficient for saturating the GPU thread scheduler (i.e., larger

domains do not significantly increase GPU performance). The

horizontal diffusion program emitted by Dawn for CPU and

3https://github.com/MeteoSwiss-APN/dawn, commit 4ae6dc0.
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GPU executes five components of horizontal diffusion as

distinct kernels. We omit kernel launch overhead and report

the raw kernel execution time only, included in Tab. II.

The FPGA platform outperforms the CPU by 4.5× and is

outperformed by either GPU, but comes closest to the upper

bound (Eq. 3) imposed by its roofline characteristics at the given

arithmetic intensity: 52% of the bandwidth upper bound (69%
of the highest measured bandwidth in Sec. VIII-D), at 26%
ALMs, 27% DSPs, and 20% M20K utilization, respectively.

The benchmark simulating infinite memory bandwidth shows

significant headroom for pushing the performance at this

arithmetic intensity with higher bandwidth off-chip memory:

without the bandwidth bottleneck, the Stratix 10 would out-

perform the P100, but falls at 60% of the performance of the

V100, at 46% ALMs, 48% DSPs, and 20% M20Ks.

C. Silicon Efficiency

The Stratix 10 is estimated to be a 700mm2 die [29] (half

the Stratix 10M, which fuses two Stratix 10 chiplets) on Intel’s

14 nm process, compared to 610mm2 on TSMC 16 nm and

815mm2 on TSMC 12 nm for the P100 and V100, respectively.

Using the benchmarks from Tab. II, this amounts to a silicon

efficiency of 0.21 and 0.71 GOp/s

mm2 with and without the memory

bottleneck for the Stratix 10, respectively; 0.34GOp/s

mm2 for P100;

and 1.04GOp/s

mm2 for the V100, when performing the horizontal

diffusion experiment.

D. Spatial Tiling

We have not considered spatial tiling, as on-chip memory

requirements were not a restriction for building the large

weather stencil program evaluated. Both memory bandwidth

and logic were bottlenecks before on-chip memory capacity,

despite minimizing off-chip memory bandwidth in the program.

Eventually, increasing the domain size will scale the internal

buffer and delay buffer sizes beyond what is feasible to buffer

in on-chip memory. Spatial tiling can be employed in this

scenario, introducing redundant computation at the domain

boundaries proportional to the DAG depth and the tile surface-

to-volume ratio. This is primarily a scheduling challenge, which

can be efficiently solved in practice [8].

X. RELATED WORK

There are numerous works on stencil accelerators on FP-

GAs [15], [8], [21], including for multi-device settings on up to

9 interconnected FPGAs [7], all of which we have considered

throughout this work. Other frameworks generating stencil

architectures have also been proposed [9], [24], [23], [25],

which we consider in Sec. VIII-C. Common to these works

is that they treat a single stencil operation applied iteratively,

allowing them to unroll the time dimension as a source of

temporal locality. StencilFlow is on a par or outperforms

all the above on simple iterative stencils, and treats a much

wider range of input programs. Niu et al. [22] explore runtime

reconfiguration of an FPGA to eliminate idle operators during

program execution. Runtime reconfiguration is not beneficial

for stencil programs considered by StencilFlow, as all operators

are assumed to operate in the same iteration space and fully

in parallel after the initialization phase.

Darkroom [30] is a framework producing spatial accelerators

of image processing pipelines from a high-level input DSL.

StencilFlow takes a similar approach, but accepts a wider scope

of input programs: in particular arbitrary DAGs of stencils,

and 3D input/output domains. Other DSLs [31], [32] do not

consider spatial computing architectures.

For the application study, Singha et al. [33], [34] present a

hand-tuned implementation of the horizontal diffusion appli-

cation targeting an FPGA+CPU coherent system. The authors

report 129.9GOp/s on an ADM-PCIE-9V3 board with the

NARMADA accelerator, and 485.4GOp/s on an ADM-PCIE-

9H7 board with the NERO accelerator, the latter owing its large

increase in performance to the introduction of HBM memory,

effectively eliminating the memory bottleneck described by

Eq. 4. The fully code generated kernels emitted by StencilFlow

outperform the DDR4-based accelerator when memory bound,

and the HBM-based when compute bound (i.e., when high

memory bandwidth is simulated).

XI. CONCLUSION

We introduced StencilFlow, an end-to-end analysis, optimiza-

tion and code-generation stack built on the DaCe framework,

enabling the generation of complex high-performance stencil

programs on spatial architectures from a high-level input DSL.

Based on a DAG representation, StencilFlow automatically

insert buffers within and between stencil operations to achieve

perfect reuse of all data in the program. Architectures emitted

by StencilFlow achieve the highest recorded single-device

performance of 1.31TOp/s, and the highest recorded multi-

device performance of 4.18TOp/s on 8 FPGAs. We demon-

strated the domain complexity supported by the framework by

treating a large stencil program used in production for weather

prediction, comparing the generated architecture to state-of-

the-art GPU and CPU performance. We release StencilFlow as

open source software, enabling reproducibility and allowing

scientists to easily target spatial computing accelerators with

complex stencil programs.
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