



# StencilFlow: Mapping Large Stencil Programs to **Distributed Spatial Computing Systems**

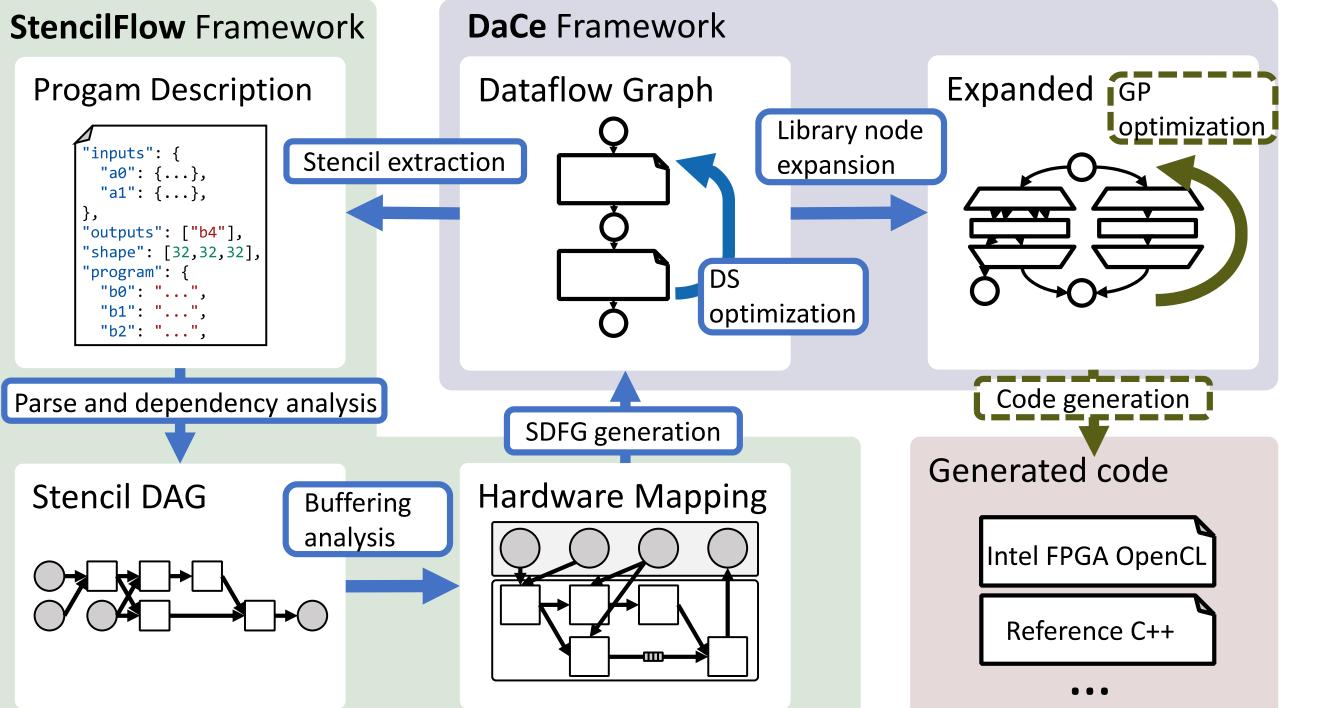
Johannes de Fine Licht\*, <u>Andreas Kuster</u>\*, Tiziano De Matteis\*, Tal Ben-Nun\*, Dominic Hofer\*†, Torsten Hoefler\*

\*Department of Computer Science, ETH Zurich, Switzerland +MeteoSwiss, Switzerland

{definelj, kustera, tdematt, tbennun, dohofer, htor}@ethz.ch

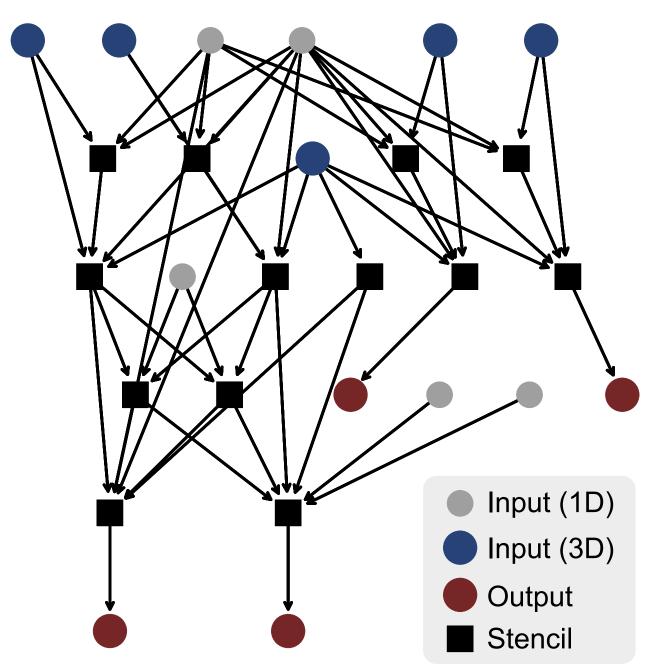


Reconfigurable hardware offers *massive spatial* 

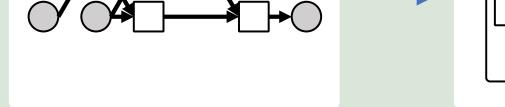

#### **Proposed solution**

We introduce *StencilFlow*, an end-to-end analysis,

optimization and code-generation stack built on the *DaCe* framework:


parallelism. However, mapping of heterogeneous stencil computation by hand while maximizing temporal locality is difficult.

### **End-to-end Workflow**




- Enables generation of complex high-performance stencil programs from high-level DSL input
- Reaching highest recorded single and multi device performance on Stratix 10

## **Case Study: Horizontal Diffusion**

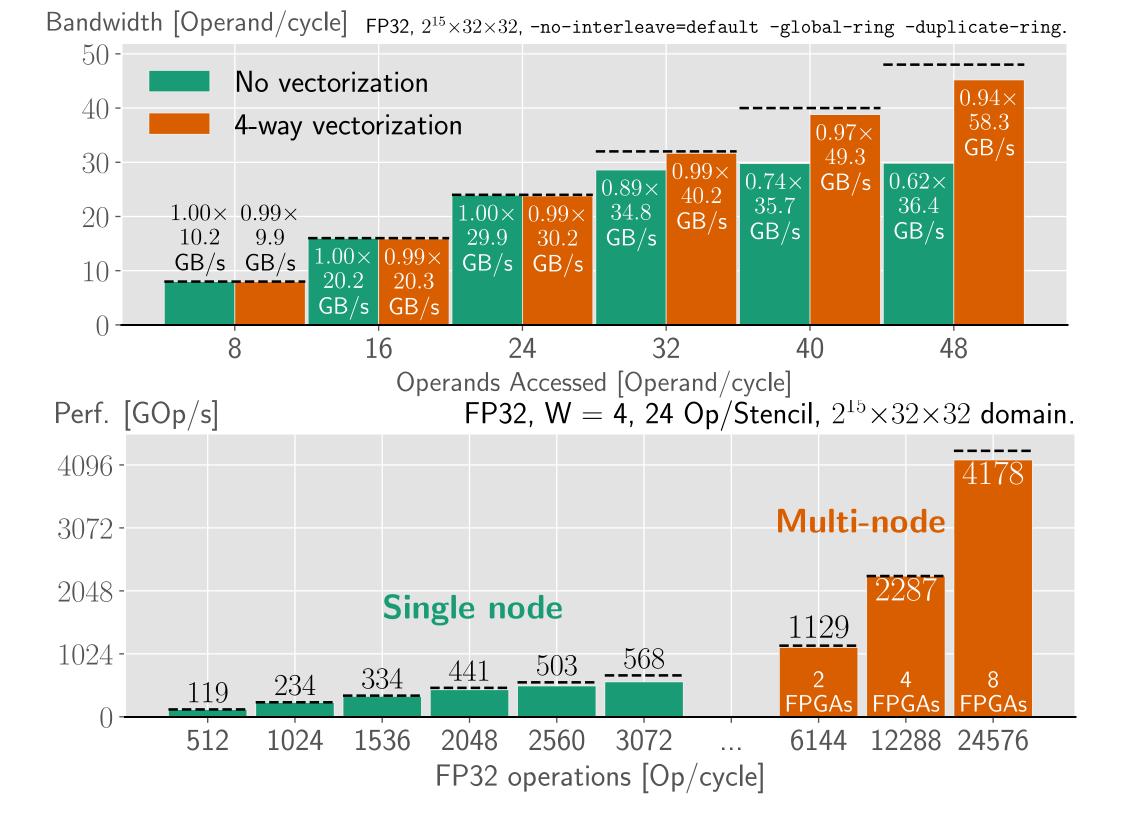


Complex dataflow graph of a horizontal diffusion stencil program used in numerical weather prediction models.



## **Open Source**

StencilFlow and DaCe are both available free and open source on github.com/spcl/{stencilflow, dace}


StencilFlow achieves perfect temporal reuse by mapping it to spatial hardware.

|             | Runtime                | Performance           | Peak BW.            | %Roof. |
|-------------|------------------------|-----------------------|---------------------|--------|
| Stratix 10  | $1,\!178\mu\mathrm{s}$ | $145\mathrm{GOp/s}$   | $77\mathrm{GB/s}$   | 52%    |
| Stratix 10* | $332\mu s$             | $513\mathrm{GOp/s}$   | $\infty  { m GB/s}$ |        |
| Xeon 12C    | $5,\!270\mu\mathrm{s}$ | $32  \mathrm{GOp/s}$  | $68\mathrm{GB/s}$   | 13%    |
| P100        | $810\mu s$             | $210  \mathrm{GOp/s}$ | $732\mathrm{GB/s}$  | 8%     |
| V100        | $201\mu s$             | $849\mathrm{GOp/s}$   | $900\mathrm{GB/s}$  | 26%    |

Horizontal diffusion benchmark. \*without memory bandwidth constraints

#### Results

|                 | Performance | ALM            | FF             | M20K            | DSP         |
|-----------------|-------------|----------------|----------------|-----------------|-------------|
| Total<br>Avail. |             | 103 M<br>692 K | 3.7 M<br>2.8 M | 11.7 K<br>8.9 K | 5760 $4468$ |
| Diffusion 2D    | 1 212 0 0 / | 449 K          | 1329 K         | 2565            | 2304        |



| W=8 (Ours)                            | $1,313\mathrm{GOp/s}$   | 449 K $64.8%$              | 1329  K<br>48.0%  | $\frac{2505}{28.6\%}$ | $2304 \\ 51.6\%$ |
|---------------------------------------|-------------------------|----------------------------|-------------------|-----------------------|------------------|
| Diffusion 3D $W=8$ (Ours)             | $1,\!152\mathrm{GOp/s}$ | 567 K<br>81.9%             | 1606 K<br>57.9%   | $5357 \\ 59.8\%$      | $3072 \\ 68.8\%$ |
| Diffusion 2D<br>(Zohouri et. al. [8]) | $913\mathrm{GOp/s}$     | 471.4 K<br>68.0%           | 1173.6 K<br>42.3% | 2204<br>24.6%         | 3844<br>86.0%    |
| Diffusion 3D<br>(Zohouri et. al. [8]) | $934\mathrm{GOp/s}$     | 450.5 K<br>65.0%           | 1078.2 K<br>38.9% | 8684<br>97.0%         | 3592<br>80.4%    |
| Waidyasooriya<br>and Hariyama [21]    | $630{ m GOp/s}$         | Arria 10 GX 1150           |                   |                       |                  |
| SODA [9]                              | $135{ m GOp/s}$         | ADM-PCIE-KU3               |                   |                       |                  |
| Niu et al. [22]                       | $119{ m GOp/s}$         | Virtex-6 SX475T            |                   |                       |                  |
| Ben-Nun et al. [14]                   | $139{ m GOp/s}$         | Virtex UltraScale+ VCU1525 |                   |                       |                  |

Comparison to hand-tuned code and other frameworks.

Deep pipeline performance (scalar/vectorized) and bandwidth.

Acknowledgements: The authors wish to thank Tobias Kenter, Christian Plessl, Jakub Beránek, the Swiss National Supercomputing Centre (CSCS), and the Paderborn Center for Parallel Computing (PC<sup>2</sup>) for their valuable help, and access to compute infrastructure.