
Vulnerability Report – Swiss Post E-Voting System – Browser V1.0

28.06.2023, Andreas Kuster, [email, redacted]

Abstract

In this report, we will showcase using a proof of concept of a malicious browser plugin injected into the

voting client’s browser, how to extract the votes (voter secrecy) and manipulate user votes without the

user and the auditor being able to detect the fraud (individual verifiability).

The malicious browser plugin can be seen as an undetectable virus as described in [Explanatory Report,

Sec 4.2.1].

[Explanatory Report, Sec 4.2.1]: With individual verifiability, voters can detect any deliberate or inadvertent misuse

of their voting rights. This should be possible even if the user device or the transmission path are not trustworthy. It

must be assumed a priori that the user device or transmission path contains undetectable viruses or has been

otherwise tampered with.

[OEV, Art. 5, Sec 2] The requirements for individual verifiability are as follows:

a. The person voting is given the opportunity to ascertain whether the vote as entered on the user device has been

manipulated or intercepted on the user device or during transmission; to this end, the person voting receives proof

that the trustworthy part of the system (Art. 8) has registered the vote as it was entered by the person voting on the

user device as being in conformity with the system; proof of correct registration is provided for each partial vote.

b. A voter who has not cast his or her vote electronically can request proof after the electronic voting system is

closed and within the statutory appeal deadlines that the trustworthy part of the system has not registered any

vote cast using the client-side authentication credential of the voter.

In this report, we first showcase the working principles of the attack in theory, followed by a proof-of-

concept implementation and demonstration. Finally, we propose remedies to mitigate and reduce the

risk imposed by this attack.

Proof of Concept Attack

In order to understand the functionality of the malicious browser plugin that is installed on the voting

client, we first look at the modified voting protocol played by the three parties.

Protocol

User/Voter Malicious Browser Extension Swiss Post Voting Server*

Visit voting website (here:
localhost:7000, otherwise for
example sg.evoting.ch)

 Sends legal-terms webpage

 Activates and contacts its
remote server for voting advice
(how/which vote to manipulate)

User accepts the legal terms

 Sends start-voting page

Enters Initialisierungscode and
date of birth, and submits them

 Extracts the Initialisierungscode
and date of birth and stores it

 Validation of input, and sends
the choose page

The user votes and submits
them

 The plugin prevents the
submission, extracts the user
votes, modifies them according
to the voting advice and
submits it then (all within a few
milliseconds)

 At the same time, it sends the
votes, together with identifying
information such as the date of
birth to the remote server
(breaking voting secrecy)

 The server accepts the
submission, and sends the
review page

 The plugin modifies the HTML
to match the votes to what the
user entered before

The user reviews and encrypts
and submits the vote

 The server sends the verify page

 The plugin again modifies the
votes to match what the voter
voted for, and changes the
verification scheme, including
the explanatory texts to what
we will discuss in detail below

The user verifies the votes,
enters the Bestätigungscode
and submits the vote

 The server accepts it, and
delivers the confirmation page
with the Finalisierungscode

The user checks it and ends the
voting process

* we are aware that switching between legal-terms, start-voting etc. is partially handled on the client

side (AngularJS), for simplicity, we describe it as if it would be a classical side for simplicity reasons.

In the scheme above, first, we break voter secrecy by sending the votes to the remote server. Secondly,

we can arbitrarily manipulate the votes without the voter knowing about it. Furthermore, as the

requests are not modified and all the code submitted is as expected, the server can also not detect any

manipulation.

For the above scheme, we have all required information available to interfere, except the verification

codes for the votes we modify.

How to handle this?

We introduce a slightly modified verification scheme, which the user can very well expect to see there (it

does not contradict the voting documents sent to them, or displayed.

Instead of showing the user all verification keys for the individual votes, we flip the verification and ask

the voter to enter the verification code to check its correctness.

For all non-modified codes, we know the correct value, and thus we enforce the validation. As we expect

that in a typical scenario, the third party is only interested in manipulating a limited number of the

multiple initiatives for vote, this means that for almost all, the verification actually works as expected, i.e.

the user has to enter the correct code, which gives them a lot of trust in the system.

For the manipulated votes, we still expect a four-digit input, we also add some time delay for the

“verification execution” but label the code as correct, no matter what has been entered in the field. As

most validations work as expected, it is safe to assume that this is not obviously happening at all, since

people stop testing after one or two failed inputs (we could even extend the scheme if people randomly

try to fail all of them, to make this one fail as well).

Optimizations

Speed: We do not give the user a chance to spot any wrong inputs by directly switching from the input to

displaying “verifying” after they entered the last digit.

We ensure that the story is sound. For that, as you can see later below, we adjust all the

information/description texts to match with our verification scheme.

We add a delay that feels natural compared to the other part of the web app, showcasing that we do

some heavy crypto computation for their verification. In reality it is just a random time delay.

Match with Text

Furthermore, we included the voting documents from St.Gallen for the latest voting session, highlighting

all relevant section for the verification. Looking at them showcases that our modified scheme, with the

updated description text on the website does not raise obvious concerns or ambiguities.

Original Verification New Verification Scheme

User Testing

To check the schemes effectiveness, we conducted a mini study, asking a couple of people to run through

this modified voting process. We provided the “Stimmrechtsausweis” and “Merkblatt für die

elektronische Stimmabgabe”, and a set of the required codes to run through the voting

(Initialisierungscode, Verifikationscodes, Bestätigungscode, Finalisierungscode). Furthermore, they were

aware that something fishy is going to happen, tough their task was to find out what the problem is.

They have never seen the voting platform before. Their background is a technical one, some of them

even IT and software engineering, and all have a higher education degree (Bachelors, Masters from

either a university or a polytechnic).

There were several inputs concerning the URL and the certificate (which of course are part of the test

system), and the Swiss Post banner, which does not match my documents from St.Gallen. Furthermore,

the banners “Please wait.. ” looked a bit weird to some of them (not as professional banners on other

pages typically look like). However, none of them had a complaint about the verification scheme, which

seemed to match well with the description on the webpage and the paper documents.

Test System vs Production System

In the E2E Gitlab repo, there is a disclaimer showcasing essential security concepts that are omitted in

the test system. In this section, we argue that these systems cannot prevent our attack.

“[…] The development environment does not represent Swiss Post's productive environment and omits numerous

security elements such as HTTP security headers, separate network zones, and a web application firewall.”

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev/-/tree/evoting-e2e-dev-1.3.0.0

(1) HTTP security headers such as X-XSS-Protection, Strict-Transport-Security (HSTS) or Content-

Security-Policy (CSP) could indeed potentially interfere with such an extension, especially

considering that we communicate with a remote server (voting advice and sending of the user

votes).

As a Firefox extension however, we can modify all request and response headers on the fly before the

HTML is interpreted and the JavaScript is executed, thus making these headers void. We did not

integrate it into our PoC extension, but to showcase the feasibility, you can find the “modheader-firefox”

addon that exactly does this: https://addons.mozilla.org/en-US/firefox/addon/modheader-firefox/

(2) Separate network zone do not prevent or influence our attack, as the extension runs on in the

client’s browser

(3) A web application firewall cannot prevent this attack, as the requests and responses are

unmodified and thus legitimate.

Security Elements

With this attack, all the security elements are still intact. Namely the SSL/TLS certificate and the

Javascript library hashes, which makes this attack hard to detect.

Furthermore, we simply omitted to add an icon for the extension, which leads to the extension not being

shown in the browser taskbar. Thus it is completely hidden from the user. The only chance to see it is

actively clicking on the “Extensions” button, though the plugin could be hidden as part of another useful

browser extension such as an adblocking extension or a free VPN.

Limitation of the PoC

Implementing such a plugin requires a lot of programming efforts, in this case over 500 lines of code.

Thus, certain aspects that do not reduce the expressiveness of the PoC have been simplified to reduce

the programming burden. Namely:

https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev/-/tree/evoting-e2e-dev-1.3.0.0
https://addons.mozilla.org/en-US/firefox/addon/modheader-firefox/

- Even though the voting contains different parts, namely the vote for parties and people, as well

as a yes/no/blank part for initiatives. The current PoC only modifies the four initiatives but could

be easily extended for the other parts of the vote.

- The default setting of the E2E deployment uses inconsistent language (parts are in French,

others are in German, ..). We kept it and adjusted the PoC accordingly to fit in best (i.e. the

modification of the answers are in the language they were on the non-modified page, namely in

French)

- We hardcoded the XPATHs that define the DOM element that needs to be modified. A different

vote or different version of the platform would potentially need to be slightly adjusted to meet

the new structure.

- The new verification scheme is no production code. It works as intended, but there might be

some uncaught side conditions for the validation, as I did not extensively test and optimize it.

Conclusion

With the attack described above we can view the user vote (voting secrecy), play a valid vote process for

the user, while in the background submitting valid, but manipulated votes.

All of this is possible under the sole assumption that the voting system has to guarantee individual

verifiability, even in case of a virus on the user device (our virus is the web browser plugin, running in the

background), as described in the explanatory report, section 4.2.1

Proof of Concept - Video

To simplify the understanding of how this system works, not only provide the code for the proof of

concept, but also a demonstration in the form of a video that runs through the process.

Video the way the user would encounter this:

[link + password to the video, redacted]

Video with demonstration and comments on what is happening under the hood:

[link + password to the video, redacted]

Proof of Concept – Code

The proof of concept consists of a browser plugin, specifically crafted for the latest version of Firefox. The

plugin can be loaded as follows:

1) Open Firefox

2) Enter “about:debugging#/runtime/this-firefox” in the status bar and press enter

3) Load temporary plugin -> select manifest.json

Setting the variable “demo” in the header of main.js from false to true allows to display a lot of

intermediate debug messages.

Furthermore, we have a Python/Flask-based web application for the remote server, delivering the voting

advice and accepting the user votes to store.

System Details:

Host computer: Ubuntu 22.04 / Firefox 111.0.1

The e-voting platform (version 1.3.0.0) has been built and deployed according to the e2e documentation

found on GitLab:

- Building Guide: https://gitlab.com/swisspost-evoting/e-voting/e-voting/-

/blob/master/BUILDING.md

- Running: https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev

- Run election event (using the default parameters): https://gitlab.com/swisspost-evoting/e-

voting/evoting-e2e-dev/-/blob/master/docker-compose/Run_Election_Event.md

The PoC code can be downloaded here:

[link + password to the PoC code, redacted]

https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/BUILDING.md
https://gitlab.com/swisspost-evoting/e-voting/e-voting/-/blob/master/BUILDING.md
https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev
https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev/-/blob/master/docker-compose/Run_Election_Event.md
https://gitlab.com/swisspost-evoting/e-voting/evoting-e2e-dev/-/blob/master/docker-compose/Run_Election_Event.md

Remedies

I feel that the only true solution to solving the issue would need a secure boot / attestation and running

signed software only. Though, there are a couple of remedies that would improve overall security and

reduce the risk, while keeping usability in mind.

Improvement of the Info Sheet

The verification is an integral part of the whole voting process, if not the most important step from a

voter’s perspective! The exact procedure, including a screenshot of how this should look like has to be

included very prominently on the info sheet.

Clean browser

A clean/fresh installed browser would mitigate this attack. This could be delivered via a USB flash drive

as part of the voting material. Such a delivery would further allow to strengthen the protection

mechanisms, for example by including features such as a VPN tunnel or a TOR connection to

obfuscate/hide the voting to protect users in foreign countries. Furthermore, this browser could be

locked down to prevent extensions from being executed.

Private Session

Encouraging the voter to run their voting in a private browsing session would not only increase security

against this attack, but actually in general (cookies, ..), as most browser extensions for example are

disabled by default in private browsing, and depending on the browser, additional anti-tracking

measures are in place.

Javascript-based Fraud Detection

As part of the web app, a Javascript-based agent could be included that checks for interferences or

modification of the HTML DOM throughout the voting process and immediately report any sort of

manipulation. Though, this is a cat-and-mouse game, as the script could be disabled using an extension

prior to HTML DOM modification.

